
RsOsp
Release 2.10.17.75

Rohde & Schwarz

Jul 12, 2021

CONTENTS:

1 Getting Started 3
1.1 Introduction . 3
1.2 Installation . 4
1.3 Finding Available Instruments . 6
1.4 Initiating Instrument Session . 6
1.5 Plain SCPI Communication . 9
1.6 Error Checking . 12
1.7 Exception Handling . 12
1.8 Transferring Files . 14
1.9 Writing Binary Data . 14
1.10 Transferring Big Data with Progress . 15
1.11 Multithreading . 16
1.12 Logging . 19

2 Revision History 23

3 Enums 25
3.1 ReplaceOrKeep . 25
3.2 TriggerExecType . 25
3.3 TriggerSlope . 25
3.4 TriggerType . 25

4 Examples 27

5 RsOsp API Structure 31
5.1 Configure . 33

5.1.1 Frame . 33
5.1.1.1 Define . 35
5.1.1.2 Insert . 36
5.1.1.3 ImportPy . 37

5.1.1.3.1 Catalog . 38
5.1.2 Compatible . 38
5.1.3 Virtual . 40
5.1.4 MainInfo . 40
5.1.5 PowerUp . 41
5.1.6 All . 43

5.1.6.1 Restore . 44
5.1.6.1.1 Catalog . 45

5.1.7 Relay . 46
5.1.7.1 Delay . 46

i

5.1.8 Lock . 47
5.2 Read . 48

5.2.1 Io . 48
5.2.1.1 InputPy . 48

5.2.2 Module . 50
5.2.2.1 Interlock . 50

5.2.3 Relay . 51
5.2.3.1 Operations . 51

5.3 Route . 52
5.3.1 Close . 52
5.3.2 Attenuation . 55
5.3.3 Phase . 57
5.3.4 Path . 58

5.3.4.1 Define . 60
5.3.4.2 Delete . 61
5.3.4.3 ImportPy . 62

5.3.4.3.1 Catalog . 63
5.4 Diagnostic . 64

5.4.1 Service . 64
5.4.1.1 Module . 65

5.4.1.1.1 HwInfo . 65
5.4.1.1.2 Temperature . 66
5.4.1.1.3 Function . 66

5.4.1.2 User . 67
5.5 Trigger . 67

5.5.1 Signal . 69
5.5.2 Sequence . 71

5.5.2.1 Define . 71
5.5.2.1.1 Entry . 72

5.5.3 Execute . 72
5.5.4 Count . 73
5.5.5 ImportPy . 74

5.5.5.1 Catalog . 75

6 RsOsp Utilities 77

7 RsOsp Logger 83

8 RsOsp Events 85

9 Index 87

Index 89

ii

RsOsp, Release 2.10.17.75

CONTENTS: 1

RsOsp, Release 2.10.17.75

2 CONTENTS:

CHAPTER

ONE

GETTING STARTED

1.1 Introduction

RsOsp is a Python remote-control communication module for Rohde & Schwarz SCPI-based Test and Measurement
Instruments. It represents SCPI commands as fixed APIs and hence provides SCPI autocompletion and helps you to
avoid common string typing mistakes.

Basic example of the idea:
SCPI command:
SYSTem:REFerence:FREQuency:SOURce

Python module representation:
writing:
driver.system.reference.frequency.source.set()

reading:
driver.system.reference.frequency.source.get()

Check out this RsOsp example:

import time

from RsOsp import *

RsOsp.assert_minimum_version('2.10')
osp = RsOsp(f'TCPIP::10.212.0.85::INSTR')

osp.utilities.visa_timeout = 5000
Sends OPC after each commands
osp.utilities.opc_query_after_write = True

osp.utilities.reset()

Self-test
self_test = osp.utilities.self_test()
print(f'Hello, I am {osp.utilities.idn_string}\n')

(continues on next page)

3

RsOsp, Release 2.10.17.75

(continued from previous page)

osp.route.path.delete_all()
osp.route.path.define.set("Test1", "(@F01M01(0201, 0302))")
paths2 = osp.route.path.get_catalog()

print(f'Osp defined paths:\n {",".join(osp.route.path.get_catalog())}')
path_last = osp.route.path.get_last()
path_list = osp.route.path.get_catalog()
pathname = path_list[0]
print(f'Defined Path Definitions: {len(path_list)}')
for pathname in path_list:

print(f' Path Name: {pathname} ({osp.route.path.define.get(pathname)})')
osp.route.close.set_path(pathname)
time.sleep(1)

print(f'Osp errors\n:{osp.utilities.query_all_errors()}')

osp.close()

Couple of reasons why to choose this module over plain SCPI approach:

• Type-safe API using typing module

• You can still use the plain SCPI communication

• You can select which VISA to use or even not use any VISA at all

• Initialization of a new session is straight-forward, no need to set any other properties

• Many useful features are already implemented - reset, self-test, opc-synchronization, error checking, option
checking

• Binary data blocks transfer in both directions

• Transfer of arrays of numbers in binary or ASCII format

• File transfers in both directions

• Events generation in case of error, sent data, received data, chunk data (for big files transfer)

• Multithreading session locking - you can use multiple threads talking to one instrument at the same time

• Logging feature tailored for SCPI communication - different for binary and ascii data

1.2 Installation

RsOsp is hosted on pypi.org. You can install it with pip (for example, pip.exe for Windows), or if you are using
Pycharm (and you should be :-) direct in the Pycharm Packet Management GUI.

4 Chapter 1. Getting Started

https://pypi.org/project/RsOsp/

RsOsp, Release 2.10.17.75

Preconditions

• Installed VISA. You can skip this if you plan to use only socket LAN connection. Download the Rohde &
Schwarz VISA for Windows, Linux, Mac OS from here

Option 1 - Installing with pip.exe under Windows

• Start the command console: WinKey + R, type cmd and hit ENTER

• Change the working directory to the Python installation of your choice (adjust the user name and python version
in the path):

cd c:\Users\John\AppData\Local\Programs\Python\Python37\Scripts

• Install with the command: pip install RsOsp

Option 2 - Installing in Pycharm

• In Pycharm Menu File->Settings->Project->Project Interpreter click on the ‘+’ button on the top
left (the last PyCharm version)

• Type RsOsp in the search box

• If you are behind a Proxy server, configure it in the Menu: File->Settings->Appearance->System
Settings->HTTP Proxy

For more information about Rohde & Schwarz instrument remote control, check out our Instru-
ment_Remote_Control_Web_Series .

Option 3 - Offline Installation

If you are still reading the installation chapter, it is probably because the options above did not work for you - proxy
problems, your boss saw the internet bill. . . Here are 5 easy step for installing the RsOsp offline:

• Download this python script (Save target as): rsinstrument_offline_install.py This installs all the preconditions
that the RsOsp needs.

• Execute the script in your offline computer (supported is python 3.6 or newer)

• Download the RsOsp package to your computer from the pypi.org: https://pypi.org/project/RsOsp/#files to for
example c:\temp\

• Start the command line WinKey + R, type cmd and hit ENTER

• Change the working directory to the Python installation of your choice (adjust the user name and python version
in the path):

cd c:\Users\John\AppData\Local\Programs\Python\Python37\Scripts

• Install with the command: pip install c:\temp\RsOsp-2.10.17.75.tar

1.2. Installation 5

https://www.rohde-schwarz.com/appnote/1dc02/
https://www.rohde-schwarz.com/driver-pages/remote-control/drivers-remote-control_110753.html
https://www.rohde-schwarz.com/driver-pages/remote-control/drivers-remote-control_110753.html
https://cdn.rohde-schwarz.com/pws/service_support/driver_pagedq/files_1/helloworld/rsinstrument_offline_install.py
https://pypi.org/project/RsOsp/#files

RsOsp, Release 2.10.17.75

1.3 Finding Available Instruments

Like the pyvisa’s ResourceManager, the RsOsp can search for available instruments:

""""
Find the instruments in your environment
"""

from RsOsp import *

Use the instr_list string items as resource names in the RsOsp constructor
instr_list = RsOsp.list_resources("?*")
print(instr_list)

If you have more VISAs installed, the one actually used by default is defined by a secret widget called Visa Conflict
Manager. You can force your program to use a VISA of your choice:

"""
Find the instruments in your environment with the defined VISA implementation
"""

from RsOsp import *

In the optional parameter visa_select you can use for example 'rs' or 'ni'
Rs Visa also finds any NRP-Zxx USB sensors
instr_list = RsOsp.list_resources('?*', 'rs')
print(instr_list)

Tip: We believe our R&S VISA is the best choice for our customers. Here are the reasons why:

• Small footprint

• Superior VXI-11 and HiSLIP performance

• Integrated legacy sensors NRP-Zxx support

• Additional VXI-11 and LXI devices search

• Availability for Windows, Linux, Mac OS

1.4 Initiating Instrument Session

RsOsp offers four different types of starting your remote-control session. We begin with the most typical case, and
progress with more special ones.

6 Chapter 1. Getting Started

RsOsp, Release 2.10.17.75

Standard Session Initialization

Initiating new instrument session happens, when you instantiate the RsOsp object. Below, is a simple Hello World
example. Different resource names are examples for different physical interfaces.

"""
Simple example on how to use the RsOsp module for remote-controlling your instrument
Preconditions:

- Installed RsOsp Python module Version 2.10.17 or newer from pypi.org
- Installed VISA, for example R&S Visa 5.12 or newer
"""

from RsOsp import *

A good practice is to assure that you have a certain minimum version installed
RsOsp.assert_minimum_version('2.10.17')
resource_string_1 = 'TCPIP::192.168.2.101::INSTR' # Standard LAN connection (also␣
→˓called VXI-11)
resource_string_2 = 'TCPIP::192.168.2.101::hislip0' # Hi-Speed LAN connection - see␣
→˓1MA208
resource_string_3 = 'GPIB::20::INSTR' # GPIB Connection
resource_string_4 = 'USB::0x0AAD::0x0119::022019943::INSTR' # USB-TMC (Test and␣
→˓Measurement Class)

Initializing the session
driver = RsOsp(resource_string_1)

idn = driver.utilities.query_str('*IDN?')
print(f"\nHello, I am: '{idn}'")
print(f'RsOsp package version: {driver.utilities.driver_version}')
print(f'Visa manufacturer: {driver.utilities.visa_manufacturer}')
print(f'Instrument full name: {driver.utilities.full_instrument_model_name}')
print(f'Instrument installed options: {",".join(driver.utilities.instrument_options)}')

Close the session
driver.close()

Note: If you are wondering about the missing ASRL1::INSTR, yes, it works too, but come on. . . it’s 2021.

Do not care about specialty of each session kind; RsOsp handles all the necessary session settings for you. You imme-
diately have access to many identification properties in the interface driver.utilities . Here are same of them:

• idn_string

• driver_version

• visa_manufacturer

• full_instrument_model_name

• instrument_serial_number

• instrument_firmware_version

• instrument_options

1.4. Initiating Instrument Session 7

RsOsp, Release 2.10.17.75

The constructor also contains optional boolean arguments id_query and reset:

driver = RsOsp('TCPIP::192.168.56.101::HISLIP', id_query=True, reset=True)

• Setting id_query to True (default is True) checks, whether your instrument can be used with the RsOsp module.

• Setting reset to True (default is False) resets your instrument. It is equivalent to calling the reset() method.

Selecting a Specific VISA

Just like in the function list_resources(), the RsOsp allows you to choose which VISA to use:

"""
Choosing VISA implementation
"""

from RsOsp import *

Force use of the Rs Visa. For NI Visa, use the "SelectVisa='ni'"
driver = RsOsp('TCPIP::192.168.56.101::INSTR', True, True, "SelectVisa='rs'")

idn = driver.utilities.query_str('*IDN?')
print(f"\nHello, I am: '{idn}'")
print(f"\nI am using the VISA from: {driver.utilities.visa_manufacturer}")

Close the session
driver.close()

No VISA Session

We recommend using VISA when possible preferrably with HiSlip session because of its low latency. However, if you
are a strict VISA denier, RsOsp has something for you too - no Visa installation raw LAN socket:

"""
Using RsOsp without VISA for LAN Raw socket communication
"""

from RsOsp import *

driver = RsOsp('TCPIP::192.168.56.101::5025::SOCKET', True, True, "SelectVisa='socket'")
print(f'Visa manufacturer: {driver.utilities.visa_manufacturer}')
print(f"\nHello, I am: '{driver.utilities.idn_string}'")

Close the session
driver.close()

Warning: Not using VISA can cause problems by debugging when you want to use the communication Trace
Tool. The good news is, you can easily switch to use VISA and back just by changing the constructor arguments.
The rest of your code stays unchanged.

8 Chapter 1. Getting Started

RsOsp, Release 2.10.17.75

Simulating Session

If a colleague is currently occupying your instrument, leave him in peace, and open a simulating session:

driver = RsOsp('TCPIP::192.168.56.101::HISLIP', True, True, "Simulate=True")

More option_string tokens are separated by comma:

driver = RsOsp('TCPIP::192.168.56.101::HISLIP', True, True, "SelectVisa='rs',␣
→˓Simulate=True")

Shared Session

In some scenarios, you want to have two independent objects talking to the same instrument. Rather than opening a
second VISA connection, share the same one between two or more RsOsp objects:

"""
Sharing the same physical VISA session by two different RsOsp objects
"""

from RsOsp import *

driver1 = RsOsp('TCPIP::192.168.56.101::INSTR', True, True)
driver2 = RsOsp.from_existing_session(driver1)

print(f'driver1: {driver1.utilities.idn_string}')
print(f'driver2: {driver2.utilities.idn_string}')

Closing the driver2 session does not close the driver1 session - driver1 is the
→˓'session master'
driver2.close()
print(f'driver2: I am closed now')

print(f'driver1: I am still opened and working: {driver1.utilities.idn_string}')
driver1.close()
print(f'driver1: Only now I am closed.')

Note: The driver1 is the object holding the ‘master’ session. If you call the driver1.close(), the driver2 loses
its instrument session as well, and becomes pretty much useless.

1.5 Plain SCPI Communication

After you have opened the session, you can use the instrument-specific part described in the RsOsp API Structure. If
for any reason you want to use the plain SCPI, use the utilities interface’s two basic methods:

• write_str() - writing a command without an answer, for example *RST

• query_str() - querying your instrument, for example the *IDN? query

You may ask a question. Actually, two questions:

• Q1: Why there are not called write() and query() ?

1.5. Plain SCPI Communication 9

RsOsp, Release 2.10.17.75

• Q2: Where is the read() ?

Answer 1: Actually, there are - the write_str() / write() and query_str() / query() are aliases, and you can
use any of them. We promote the _str names, to clearly show you want to work with strings. Strings in Python3 are
Unicode, the bytes and string objects are not interchangeable, since one character might be represented by more than 1
byte. To avoid mixing string and binary communication, all the method names for binary transfer contain _bin in the
name.

Answer 2: Short answer - you do not need it. Long answer - your instrument never sends unsolicited responses. If
you send a set command, you use write_str(). For a query command, you use query_str(). So, you really do not
need it. . .

Bottom line - if you are used to write() and query() methods, from pyvisa, the write_str() and query_str()
are their equivalents.

Enough with the theory, let us look at an example. Simple write, and query:

"""
Basic string write_str / query_str
"""

from RsOsp import *

driver = RsOsp('TCPIP::192.168.56.101::INSTR')
driver.utilities.write_str('*RST')
response = driver.utilities.query_str('*IDN?')
print(response)

Close the session
driver.close()

This example is so-called “University-Professor-Example” - good to show a principle, but never used in praxis. The
abovementioned commands are already a part of the driver’s API. Here is another example, achieving the same goal:

"""
Basic string write_str / query_str
"""

from RsOsp import *

driver = RsOsp('TCPIP::192.168.56.101::INSTR')
driver.utilities.reset()
print(driver.utilities.idn_string)

Close the session
driver.close()

One additional feature we need to mention here: VISA timeout. To simplify, VISA timeout plays a role in each
query_xxx(), where the controller (your PC) has to prevent waiting forever for an answer from your instrument.
VISA timeout defines that maximum waiting time. You can set/read it with the visa_timeout property:

Timeout in milliseconds
driver.utilities.visa_timeout = 3000

After this time, the RsOsp raises an exception. Speaking of exceptions, an important feature of the RsOsp is Instrument
Status Checking. Check out the next chapter that describes the error checking in details.

10 Chapter 1. Getting Started

RsOsp, Release 2.10.17.75

For completion, we mention other string-based write_xxx() and query_xxx() methods - all in one example. They
are convenient extensions providing type-safe float/boolean/integer setting/querying features:

"""
Basic string write_xxx / query_xxx
"""

from RsOsp import *

driver = RsOsp('TCPIP::192.168.56.101::INSTR')
driver.utilities.visa_timeout = 5000
driver.utilities.instrument_status_checking = True
driver.utilities.write_int('SWEEP:COUNT ', 10) # sending 'SWEEP:COUNT 10'
driver.utilities.write_bool('SOURCE:RF:OUTPUT:STATE ', True) # sending
→˓'SOURCE:RF:OUTPUT:STATE ON'
driver.utilities.write_float('SOURCE:RF:FREQUENCY ', 1E9) # sending 'SOURCE:RF:FREQUENCY␣
→˓1000000000'

sc = driver.utilities.query_int('SWEEP:COUNT?') # returning integer number sc=10
out = driver.utilities.query_bool('SOURCE:RF:OUTPUT:STATE?') # returning boolean␣
→˓out=True
freq = driver.utilities.query_float('SOURCE:RF:FREQUENCY?') # returning float number␣
→˓freq=1E9

Close the session
driver.close()

Lastly, a method providing basic synchronization: query_opc(). It sends query *OPC? to your instrument. The
instrument waits with the answer until all the tasks it currently has in a queue are finished. This way your program
waits too, and this way it is synchronized with the actions in the instrument. Remember to have the VISA timeout set
to an appropriate value to prevent the timeout exception. Here’s the snippet:

driver.utilities.visa_timeout = 3000
driver.utilities.write_str("INIT")
driver.utilities.query_opc()

The results are ready now to fetch
results = driver.utilities.query_str("FETCH:MEASUREMENT?")

Tip: Wait, there’s more: you can send the *OPC? after each write_xxx() automatically:

Default value after init is False
driver.utilities.opc_query_after_write = True

1.5. Plain SCPI Communication 11

RsOsp, Release 2.10.17.75

1.6 Error Checking

RsOsp pushes limits even further (internal R&S joke): It has a built-in mechanism that after each command/query
checks the instrument’s status subsystem, and raises an exception if it detects an error. For those who are already
screaming: Speed Performance Penalty!!!, don’t worry, you can disable it.

Instrument status checking is very useful since in case your command/query caused an error, you are immediately
informed about it. Status checking has in most cases no practical effect on the speed performance of your program.
However, if for example, you do many repetitions of short write/query sequences, it might make a difference to switch
it off:

Default value after init is True
driver.utilities.instrument_status_checking = False

To clear the instrument status subsystem of all errors, call this method:

driver.utilities.clear_status()

Instrument’s status system error queue is clear-on-read. It means, if you query its content, you clear it at the same time.
To query and clear list of all the current errors, use this snippet:

errors_list = driver.utilities.query_all_errors()

See the next chapter on how to react on errors.

1.7 Exception Handling

The base class for all the exceptions raised by the RsOsp is RsInstrException. Inherited exception classes:

• ResourceError raised in the constructor by problems with initiating the instrument, for example wrong or
non-existing resource name

• StatusException raised if a command or a query generated error in the instrument’s error queue

• TimeoutException raised if a visa timeout or an opc timeout is reached

In this example we show usage of all of them. Because it is difficult to generate an error using the instrument-specific
SCPI API, we use plain SCPI commands:

"""
Showing how to deal with exceptions
"""

from RsOsp import *

driver = None
Try-catch for initialization. If an error occures, the ResourceError is raised
try:

driver = RsOsp('TCPIP::10.112.1.179::HISLIP')
except ResourceError as e:

print(e.args[0])
print('Your instrument is probably OFF...')
Exit now, no point of continuing
exit(1)

(continues on next page)

12 Chapter 1. Getting Started

RsOsp, Release 2.10.17.75

(continued from previous page)

Dealing with commands that potentially generate errors OPTION 1:
Switching the status checking OFF termporarily
driver.utilities.instrument_status_checking = False
driver.utilities.write_str('MY:MISSpelled:COMMand')
Clear the error queue
driver.utilities.clear_status()
Status checking ON again
driver.utilities.instrument_status_checking = True

Dealing with queries that potentially generate errors OPTION 2:
try:

You migh want to reduce the VISA timeout to avoid long waiting
driver.utilities.visa_timeout = 1000
driver.utilities.query_str('MY:WRONg:QUERy?')

except StatusException as e:
Instrument status error
print(e.args[0])
print('Nothing to see here, moving on...')

except TimeoutException as e:
Timeout error
print(e.args[0])
print('That took a long time...')

except RsInstrException as e:
RsInstrException is a base class for all the RsOsp exceptions
print(e.args[0])
print('Some other RsOsp error...')

finally:
driver.utilities.visa_timeout = 5000
Close the session in any case
driver.close()

Tip: General rules for exception handling:

• If you are sending commands that might generate errors in the instrument, for example deleting a file which does
not exist, use the OPTION 1 - temporarily disable status checking, send the command, clear the error queue and
enable the status checking again.

• If you are sending queries that might generate errors or timeouts, for example querying measurement that can
not be performed at the moment, use the OPTION 2 - try/except with optionally adjusting the timeouts.

1.7. Exception Handling 13

RsOsp, Release 2.10.17.75

1.8 Transferring Files

Instrument -> PC

You definitely experienced it: you just did a perfect measurement, saved the results as a screenshot to an instrument’s
storage drive. Now you want to transfer it to your PC. With RsOsp, no problem, just figure out where the screenshot
was stored on the instrument. In our case, it is var/user/instr_screenshot.png:

driver.utilities.read_file_from_instrument_to_pc(
r'var/user/instr_screenshot.png',
r'c:\temp\pc_screenshot.png')

PC -> Instrument

Another common scenario: Your cool test program contains a setup file you want to transfer to your instrument: Here
is the RsOsp one-liner split into 3 lines:

driver.utilities.send_file_from_pc_to_instrument(
r'c:\MyCoolTestProgram\instr_setup.sav',
r'var/appdata/instr_setup.sav')

1.9 Writing Binary Data

Writing from bytes

An example where you need to send binary data is a waveform file of a vector signal generator. First, you compose
your wform_data as bytes, and then you send it with write_bin_block():

MyWaveform.wv is an instrument file name under which this data is stored
driver.utilities.write_bin_block(

"SOUR:BB:ARB:WAV:DATA 'MyWaveform.wv',",
wform_data)

Note: Notice the write_bin_block() has two parameters:

• string parameter cmd for the SCPI command

• bytes parameter payload for the actual binary data to send

Writing from PC files

Similar to querying binary data to a file, you can write binary data from a file. The second parameter is then the PC
file path the content of which you want to send:

driver.utilities.write_bin_block_from_file(
"SOUR:BB:ARB:WAV:DATA 'MyWaveform.wv',",
r"c:\temp\wform_data.wv")

14 Chapter 1. Getting Started

RsOsp, Release 2.10.17.75

1.10 Transferring Big Data with Progress

We can agree that it can be annoying using an application that shows no progress for long-lasting operations. The same
is true for remote-control programs. Luckily, the RsOsp has this covered. And, this feature is quite universal - not just
for big files transfer, but for any data in both directions.

RsOsp allows you to register a function (programmers fancy name is callback), which is then periodicaly invoked after
transfer of one data chunk. You can define that chunk size, which gives you control over the callback invoke frequency.
You can even slow down the transfer speed, if you want to process the data as they arrive (direction instrument -> PC).

To show this in praxis, we are going to use another University-Professor-Example: querying the *IDN? with chunk
size of 2 bytes and delay of 200ms between each chunk read:

"""
Event handlers by reading
"""

from RsOsp import *
import time

def my_transfer_handler(args):
"""Function called each time a chunk of data is transferred"""
Total size is not always known at the beginning of the transfer
total_size = args.total_size if args.total_size is not None else "unknown"

print(f"Context: '{args.context}{'with opc' if args.opc_sync else ''}', "
f"chunk {args.chunk_ix}, "
f"transferred {args.transferred_size} bytes, "
f"total size {total_size}, "
f"direction {'reading' if args.reading else 'writing'}, "
f"data '{args.data}'")

if args.end_of_transfer:
print('End of Transfer')

time.sleep(0.2)

driver = RsOsp('TCPIP::192.168.56.101::INSTR')

driver.events.on_read_handler = my_transfer_handler
Switch on the data to be included in the event arguments
The event arguments args.data will be updated
driver.events.io_events_include_data = True
Set data chunk size to 2 bytes
driver.utilities.data_chunk_size = 2
driver.utilities.query_str('*IDN?')
Unregister the event handler
driver.utilities.on_read_handler = None

Close the session
driver.close()

If you start it, you might wonder (or maybe not): why is the args.total_size = None? The reason is, in this

1.10. Transferring Big Data with Progress 15

RsOsp, Release 2.10.17.75

particular case the RsOsp does not know the size of the complete response up-front. However, if you use the same
mechanism for transfer of a known data size (for example, file transfer), you get the information about the total size too,
and hence you can calculate the progress as:

progress [pct] = 100 * args.transferred_size / args.total_size

Snippet of transferring file from PC to instrument, the rest of the code is the same as in the previous example:

driver.events.on_write_handler = my_transfer_handler
driver.events.io_events_include_data = True
driver.data_chunk_size = 1000
driver.utilities.send_file_from_pc_to_instrument(

r'c:\MyCoolTestProgram\my_big_file.bin',
r'var/user/my_big_file.bin')

Unregister the event handler
driver.events.on_write_handler = None

1.11 Multithreading

You are at the party, many people talking over each other. Not every person can deal with such crosstalk, neither can
measurement instruments. For this reason, RsOsp has a feature of scheduling the access to your instrument by using
so-called Locks. Locks make sure that there can be just one client at a time talking to your instrument. Talking in this
context means completing one communication step - one command write or write/read or write/read/error check.

To describe how it works, and where it matters, we take three typical mulithread scenarios:

One instrument session, accessed from multiple threads

You are all set - the lock is a part of your instrument session. Check out the following example - it will execute properly,
although the instrument gets 10 queries at the same time:

"""
Multiple threads are accessing one RsOsp object
"""

import threading
from RsOsp import *

def execute(session):
"""Executed in a separate thread."""
session.utilities.query_str('*IDN?')

driver = RsOsp('TCPIP::192.168.56.101::INSTR')
threads = []
for i in range(10):

t = threading.Thread(target=execute, args=(driver,))
t.start()
threads.append(t)

print('All threads started')

(continues on next page)

16 Chapter 1. Getting Started

RsOsp, Release 2.10.17.75

(continued from previous page)

Wait for all threads to join this main thread
for t in threads:

t.join()
print('All threads ended')

driver.close()

Shared instrument session, accessed from multiple threads

Same as the previous case, you are all set. The session carries the lock with it. You have two objects, talking to the
same instrument from multiple threads. Since the instrument session is shared, the same lock applies to both objects
causing the exclusive access to the instrument.

Try the following example:

"""
Multiple threads are accessing two RsOsp objects with shared session
"""

import threading
from RsOsp import *

def execute(session: RsOsp, session_ix, index) -> None:
"""Executed in a separate thread."""
print(f'{index} session {session_ix} query start...')
session.utilities.query_str('*IDN?')
print(f'{index} session {session_ix} query end')

driver1 = RsOsp('TCPIP::192.168.56.101::INSTR')
driver2 = RsOsp.from_existing_session(driver1)
driver1.utilities.visa_timeout = 200
driver2.utilities.visa_timeout = 200
To see the effect of crosstalk, uncomment this line
driver2.utilities.clear_lock()

threads = []
for i in range(10):

t = threading.Thread(target=execute, args=(driver1, 1, i,))
t.start()
threads.append(t)
t = threading.Thread(target=execute, args=(driver2, 2, i,))
t.start()
threads.append(t)

print('All threads started')

Wait for all threads to join this main thread
for t in threads:

t.join()
print('All threads ended')

(continues on next page)

1.11. Multithreading 17

RsOsp, Release 2.10.17.75

(continued from previous page)

driver2.close()
driver1.close()

As you see, everything works fine. If you want to simulate some party crosstalk, uncomment the line driver2.
utilities.clear_lock(). Thich causes the driver2 session lock to break away from the driver1 session lock. Al-
though the driver1 still tries to schedule its instrument access, the driver2 tries to do the same at the same time, which
leads to all the fun stuff happening.

Multiple instrument sessions accessed from multiple threads

Here, there are two possible scenarios depending on the instrument’s VISA interface:

• Your are lucky, because you instrument handles each remote session completely separately. An example of such
instrument is SMW200A. In this case, you have no need for session locking.

• Your instrument handles all sessions with one set of in/out buffers. You need to lock the session for the duration
of a talk. And you are lucky again, because the RsOsp takes care of it for you. The text below describes this
scenario.

Run the following example:

"""
Multiple threads are accessing two RsOsp objects with two separate sessions
"""

import threading
from RsOsp import *

def execute(session: RsOsp, session_ix, index) -> None:
"""Executed in a separate thread."""
print(f'{index} session {session_ix} query start...')
session.utilities.query_str('*IDN?')
print(f'{index} session {session_ix} query end')

driver1 = RsOsp('TCPIP::192.168.56.101::INSTR')
driver2 = RsOsp('TCPIP::192.168.56.101::INSTR')
driver1.utilities.visa_timeout = 200
driver2.utilities.visa_timeout = 200

Synchronise the sessions by sharing the same lock
driver2.utilities.assign_lock(driver1.utilities.get_lock()) # To see the effect of␣
→˓crosstalk, comment this line

threads = []
for i in range(10):

t = threading.Thread(target=execute, args=(driver1, 1, i,))
t.start()
threads.append(t)
t = threading.Thread(target=execute, args=(driver2, 2, i,))
t.start()

(continues on next page)

18 Chapter 1. Getting Started

RsOsp, Release 2.10.17.75

(continued from previous page)

threads.append(t)
print('All threads started')

Wait for all threads to join this main thread
for t in threads:

t.join()
print('All threads ended')

driver2.close()
driver1.close()

You have two completely independent sessions that want to talk to the same instrument at the same time. This will
not go well, unless they share the same session lock. The key command to achieve this is driver2.utilities.
assign_lock(driver1.utilities.get_lock()) Try to comment it and see how it goes. If despite commenting
the line the example runs without issues, you are lucky to have an instrument similar to the SMW200A.

1.12 Logging

Yes, the logging again. This one is tailored for instrument communication. You will appreciate such handy feature
when you troubleshoot your program, or just want to protocol the SCPI communication for your test reports.

What can you actually do with the logger?

• Write SCPI communication to a stream-like object, for example console or file, or both simultaneously

• Log only errors and skip problem-free parts; this way you avoid going through thousands lines of texts

• Investigate duration of certain operations to optimize your program’s performance

• Log custom messages from your program

Let us take this basic example:

"""
Basic logging example to the console
"""

from RsOsp import *

driver = RsOsp('TCPIP::192.168.1.101::INSTR')

Switch ON logging to the console.
driver.utilities.logger.log_to_console = True
driver.utilities.logger.mode = LoggingMode.On
driver.utilities.reset()

Close the session
driver.close()

Console output:

10:29:10.819 TCPIP::192.168.1.101::INSTR 0.976 ms Write: *RST
10:29:10.819 TCPIP::192.168.1.101::INSTR 1884.985 ms Status check: OK
10:29:12.704 TCPIP::192.168.1.101::INSTR 0.983 ms Query OPC: 1

(continues on next page)

1.12. Logging 19

RsOsp, Release 2.10.17.75

(continued from previous page)

10:29:12.705 TCPIP::192.168.1.101::INSTR 2.892 ms Clear status: OK
10:29:12.708 TCPIP::192.168.1.101::INSTR 3.905 ms Status check: OK
10:29:12.712 TCPIP::192.168.1.101::INSTR 1.952 ms Close: Closing session

The columns of the log are aligned for better reading. Columns meaning:

• (1) Start time of the operation

• (2) Device resource name (you can set an alias)

• (3) Duration of the operation

• (4) Log entry

Tip: You can customize the logging format with set_format_string(), and set the maximum log entry length with
the properties:

• abbreviated_max_len_ascii

• abbreviated_max_len_bin

• abbreviated_max_len_list

See the full logger help here.

Notice the SCPI communication starts from the line driver.reset(). If you want to log the initialization of the
session as well, you have to switch the logging ON already in the constructor:

driver = RsOsp('TCPIP::192.168.56.101::HISLIP', options='LoggingMode=On')

Parallel to the console logging, you can log to a general stream. Do not fear the programmer’s jargon’. . . under the
term stream you can just imagine a file. To be a little more technical, a stream in Python is any object that has two
methods: write() and flush(). This example opens a file and sets it as logging target:

"""
Example of logging to a file
"""

from RsOsp import *

driver = RsOsp('TCPIP::192.168.1.101::INSTR')

We also want to log to the console.
driver.utilities.logger.log_to_console = True

Logging target is our file
file = open(r'c:\temp\my_file.txt', 'w')
driver.utilities.logger.set_logging_target(file)
driver.utilities.logger.mode = LoggingMode.On

Instead of the 'TCPIP::192.168.1.101::INSTR', show 'MyDevice'
driver.utilities.logger.device_name = 'MyDevice'

Custom user entry
driver.utilities.logger.info_raw('----- This is my custom log entry. ---- ')

(continues on next page)

20 Chapter 1. Getting Started

RsOsp, Release 2.10.17.75

(continued from previous page)

driver.utilities.reset()

Close the session
driver.close()

Close the log file
file.close()

Tip: To make the log more compact, you can skip all the lines with Status check: OK:

driver.utilities.logger.log_status_check_ok = False

Hint: You can share the logging file between multiple sessions. In such case, remember to close the file only after
you have stopped logging in all your sessions, otherwise you get a log write error.

Another cool feature is logging only errors. To make this mode usefull for troubleshooting, you also want to see the
circumstances which lead to the errors. Each driver elementary operation, for example, write_str(), can generate
a group of log entries - let us call them Segment. In the logging mode Errors, a whole segment is logged only if at
least one entry of the segment is an error.

The script below demonstrates this feature. We use a direct SCPI communication to send a misspelled SCPI command
*CLS, which leads to instrument status error:

"""
Logging example to the console with only errors logged
"""

from RsOsp import *

driver = RsOsp('TCPIP::192.168.1.101::INSTR', options='LoggingMode=Errors')

Switch ON logging to the console.
driver.utilities.logger.log_to_console = True

Reset will not be logged, since no error occurred there
driver.utilities.reset()

Now a misspelled command.
driver.utilities.write('*CLaS')

A good command again, no logging here
idn = driver.utilities.query('*IDN?')

Close the session
driver.close()

Console output:

1.12. Logging 21

RsOsp, Release 2.10.17.75

12:11:02.879 TCPIP::192.168.1.101::INSTR 0.976 ms Write string: *CLaS
12:11:02.879 TCPIP::192.168.1.101::INSTR 6.833 ms Status check: StatusException:

Instrument error detected: Undefined header;
→˓*CLaS

Notice the following:

• Although the operation Write string: *CLaS finished without an error, it is still logged, because it provides the
context for the actual error which occurred during the status checking right after.

• No other log entries are present, including the session initialization and close, because they were all error-free.

22 Chapter 1. Getting Started

CHAPTER

TWO

REVISION HISTORY

Rohde & Schwarz OSP Opens Switch Platform RsOsp instrument driver.

Supported instruments: OSP

The package is hosted here: https://pypi.org/project/RsOsp/

Documentation: https://RsOsp.readthedocs.io/

Examples: https://github.com/Rohde-Schwarz/Examples/tree/main/Misc/Python/RsOsp_ScpiPackage

Release Notes:

Latest release notes summary: Release for new OSP FW 2.10.17

Version 2.10.17.75

• Release for new OSP FW 2.10.17

Version 1.0.4.57

• Added documentation on ReadTheDocs

Version 1.0.4.57

• Fixed formatting of string in methods with list of paths as inputs

Version 1.0.3.55

• Changed responses for methods with List[string] return values: If the instrument returns exactly one empty string,
the methods return empty List []

Version 1.0.2.54

• Fixed parsing of the instrument errors when an error message contains two double quotes

Version 1.0.0.50

• First released version

23

https://pypi.org/project/RsOsp/
https://RsOsp.readthedocs.io/
https://github.com/Rohde-Schwarz/Examples/tree/main/Misc/Python/RsOsp_ScpiPackage

RsOsp, Release 2.10.17.75

24 Chapter 2. Revision History

CHAPTER

THREE

ENUMS

3.1 ReplaceOrKeep

Example value:
value = enums.ReplaceOrKeep.KEEP
All values (2x):
KEEP | REPLace

3.2 TriggerExecType

Example value:
value = enums.TriggerExecType.RESet
All values (2x):
RESet | TRIGger

3.3 TriggerSlope

Example value:
value = enums.TriggerSlope.BOTH
All values (3x):
BOTH | NEGative | POSitive

3.4 TriggerType

Example value:
value = enums.TriggerType.ADDRessed
All values (4x):
ADDRessed | SEQuenced | SINGle | TOGGle

25

RsOsp, Release 2.10.17.75

26 Chapter 3. Enums

CHAPTER

FOUR

EXAMPLES

For more examples, visit our Rohde & Schwarz Github repository.

import time

from RsOsp import *

RsOsp.assert_minimum_version('2.10')
osp = RsOsp(f'TCPIP::10.212.0.85::INSTR')

osp.utilities.visa_timeout = 5000
Sends OPC after each commands
osp.utilities.opc_query_after_write = True

osp.utilities.reset()

Self-test
self_test = osp.utilities.self_test()
print(f'Hello, I am {osp.utilities.idn_string}\n')

osp.route.path.delete_all()
osp.route.path.define.set("Test1", "(@F01M01(0201, 0302))")
paths2 = osp.route.path.get_catalog()

print(f'Osp defined paths:\n {",".join(osp.route.path.get_catalog())}')
path_last = osp.route.path.get_last()
path_list = osp.route.path.get_catalog()
pathname = path_list[0]
print(f'Defined Path Definitions: {len(path_list)}')
for pathname in path_list:

print(f' Path Name: {pathname} ({osp.route.path.define.get(pathname)})')
osp.route.close.set_path(pathname)
time.sleep(1)

print(f'Osp errors\n:{osp.utilities.query_all_errors()}')

osp.close()

import time

from RsOsp import *
(continues on next page)

27

https://github.com/Rohde-Schwarz/Examples/tree/main/Misc/Python/RsOsp_ScpiPackage

RsOsp, Release 2.10.17.75

(continued from previous page)

def ask(prompt, typ, default):
print('%s [%s] ' % (prompt, default)),
value = typ(input())
if not value:

return default
else:

return value

RsOsp.assert_minimum_version('2.10')
ip = ask('Enter IP address of OSP: ', str, '10.212.0.85')

print('---')
print('--- O S P D E V I C E I N F O R M A T I O N -----------------')
print('---')
osp_base = RsOsp(f'TCPIP::{ip}::INSTR', True, False)

osp_base.utilities.visa_timeout = 5000
Sends OPC after each commands
osp_base.utilities.opc_query_after_write = True
Checks for syst:err? after each command / query
osp_base.utilities.instrument_status_checking = True

You can still use the direct SCPI write / query:
osp_base.utilities.write_str('*RST')
instr_err = osp_base.utilities.query_str('SYST:ERR?')
System Reset
osp_base.utilities.reset()

Self-test
self_test = osp_base.utilities.self_test()

print(f'Identification=: {osp_base.utilities.idn_string}\n')
print(f'Instrument Manufacturer.......=: {osp_base.utilities.manufacturer}')
print(f'Instrument Name=: {osp_base.utilities.full_instrument_model_name}
→˓')
print(f'Instrument Serial Number......=: {osp_base.utilities.instrument_serial_number}')
print(f'Instrument Firmware Version ..=: {osp_base.utilities.instrument_firmware_version}
→˓')
print(f'Instrument Options............=: {",".join(osp_base.utilities.instrument_
→˓options)}\n')
print(f'Supported Devices..=: {",".join(osp_base.utilities.supported_models)}
→˓')
print(f'VISA Manufacturer.............=: {osp_base.utilities.visa_manufacturer}')
print(f'VISA Timeout..................=: {osp_base.utilities.visa_timeout}')
print(f'Driver Version=: {osp_base.utilities.driver_version}\n')

print(f'Osp instrument status:{osp_base.utilities.instrument_status_checking}')

print(f'Osp HwInfo:\n{",".join(osp_base.diagnostic.service.get_hw_info())}')
(continues on next page)

28 Chapter 4. Examples

RsOsp, Release 2.10.17.75

(continued from previous page)

print(f'Osp virtual mode enable ?:{osp_base.configure.virtual.get_mode()}')
if osp_base.configure.virtual.get_mode() is False:

osp_base.configure.virtual.set_mode(True)
print(f'Osp virtual mode enable ?:{osp_base.configure.virtual.get_mode()}')

osp_base.route.path.delete_all()
paths = osp_base.route.path.get_catalog()

osp_base.route.path.define.set("Test1", "(@F01M01(0201, 0302))")
paths2 = osp_base.route.path.get_catalog()

print(f'Osp HwInfo:\n{",".join(osp_base.diagnostic.service.get_hw_info())}')
hwinfolist = osp_base.diagnostic.service.get_hw_info()
print(hwinfolist)

for hw in hwinfolist:
print(hw)
module_info = hw.rsplit("|")
print(module_info)
print(module_info[1])
time.sleep(1)

get path list and switch all after each other
print(f'Osp defined paths:\n {",".join(osp_base.route.path.get_catalog())}')
path_last = osp_base.route.path.get_last()
path_list = osp_base.route.path.get_catalog()
path_name = path_list[0]
print(f'Defined Path Definitions: {len(path_list)}')
for path_name in path_list:

print(f' Path Name: {path_name} ({osp_base.route.path.define.get(path_name)})')
osp_base.route.close.set_path(path_name)
print(f'Osp error?:{osp_base.utilities.query_str("SYST:ERR?")}')
time.sleep(1)

print(f'Osp error?:{osp_base.utilities.query_str("SYST:ERR?")}')
osp_base.utilities.reset()

osp_base.configure.virtual.set_mode(False)

osp_base.close()

29

RsOsp, Release 2.10.17.75

30 Chapter 4. Examples

CHAPTER

FIVE

RSOSP API STRUCTURE

class RsOsp(resource_name: str, id_query: bool = True, reset: bool = False, options: Optional[str] = None,
direct_session: Optional[object] = None)

63 total commands, 5 Sub-groups, 0 group commands

Initializes new RsOsp session.

Parameter options tokens examples:

• Simulate=True - starts the session in simulation mode. Default: False

• SelectVisa=socket - uses no VISA implementation for socket connections - you do not need any
VISA-C installation

• SelectVisa=rs - forces usage of RohdeSchwarz Visa

• SelectVisa=ivi - forces usage of National Instruments Visa

• QueryInstrumentStatus = False - same as driver.utilities.
instrument_status_checking = False. Default: True

• WriteDelay = 20, ReadDelay = 5 - Introduces delay of 20ms before each write and 5ms before
each read. Default: 0ms for both

• OpcWaitMode = OpcQuery - mode for all the opc-synchronised write/reads. Other modes:
StbPolling, StbPollingSlow, StbPollingSuperSlow. Default: StbPolling

• AddTermCharToWriteBinBLock = True - Adds one additional LF to the end of the binary data
(some instruments require that). Default: False

• AssureWriteWithTermChar = True - Makes sure each command/query is terminated with termi-
nation character. Default: Interface dependent

• TerminationCharacter = "\r" - Sets the termination character for reading. Default: \n (LineFeed
or LF)

• DataChunkSize = 10E3 - Maximum size of one write/read segment. If transferred data is bigger, it
is split to more segments. Default: 1E6 bytes

• OpcTimeout = 10000 - same as driver.utilities.opc_timeout = 10000. Default: 30000ms

• VisaTimeout = 5000 - same as driver.utilities.visa_timeout = 5000. Default: 10000ms

• ViClearExeMode = Disabled - viClear() execution mode. Default: execute_on_all

• OpcQueryAfterWrite = True - same as driver.utilities.opc_query_after_write = True. Default:
False

• StbInErrorCheck = False - if true, the driver checks errors with *STB? If false, it uses
SYST:ERR?. Default: True

31

RsOsp, Release 2.10.17.75

• LoggingMode = LoggingMode.On - Sets the logging status right from the start. Default: Off

• LoggingName = 'MyDevice' - Sets the name to represent the session in the log entries. Default:
'resource_name'

Parameters

• resource_name – VISA resource name, e.g. ‘TCPIP::192.168.2.1::INSTR’

• id_query – if True: the instrument’s model name is verified against the models supported
by the driver and eventually throws an exception.

• reset – Resets the instrument (sends *RST command) and clears its status sybsystem

• options – string tokens alternating the driver settings.

• direct_session – Another driver object or pyVisa object to reuse the session instead of
opening a new session.

static assert_minimum_version(min_version: str)→ None
Asserts that the driver version fulfills the minimum required version you have entered. This way you make
sure your installed driver is of the entered version or newer.

close()→ None
Closes the active RsOsp session.

classmethod from_existing_session(session: object, options: Optional[str] = None)→ RsOsp
Creates a new RsOsp object with the entered ‘session’ reused.

Parameters

• session – can be an another driver or a direct pyvisa session.

• options – string tokens alternating the driver settings.

get_session_handle()→ object
Returns the underlying session handle.

static list_resources(expression: str = '?*::INSTR', visa_select: Optional[str] = None)→ List[str]

Finds all the resources defined by the expression

• ‘?*’ - matches all the available instruments

• ‘USB::?*’ - matches all the USB instruments

• “TCPIP::192?*’ - matches all the LAN instruments with the IP address starting with 192

Parameters

• expression – see the examples in the function

• visa_select – optional parameter selecting a specific VISA. Examples: ‘@ivi’, ‘@rs’

32 Chapter 5. RsOsp API Structure

mailto:'@ivi
mailto:'@rs

RsOsp, Release 2.10.17.75

Subgroups

5.1 Configure

class Configure
Configure commands group definition. 24 total commands, 8 Sub-groups, 0 group commands

Subgroups

5.1.1 Frame

SCPI Commands

CONFigure:FRAMe:CATalog
CONFigure:FRAMe:ADD
CONFigure:FRAMe:DELete
CONFigure:FRAMe:DELete:ALL
CONFigure:FRAMe:EXPort

class Frame
Frame commands group definition. 11 total commands, 3 Sub-groups, 5 group commands

delete(frame_id: str)→ None

SCPI: CONFigure:FRAMe:DELete
driver.configure.frame.delete(frame_id = r1)

Deletes the definition of a selected secondary switch unit from the primary switch unit’s internal volatile
memory. Use the command method RsOsp.Configure.Frame.catalog to query the existing secondary switch
unit definitions. When you delete a secondary switch unit from an existing list of secondary devices, all
following frame IDs of secondary switch units listed after the deleted device are automatically renumbered
(decremented by 1) . For example, if you delete a secondary switch unit with frame ID F03, the next
remaining secondary device F04 becomes secondary device F03, the next remaining secondary device F05
becomes secondary device F04, etc. Note that the deletion of a secondary switch unit can impact your path
definitions, even if the deleted frame was not used for any path definitions. For example, consider a setup
with 4 secondary devices (F02 to F05) . If you delete the 2nd secondary device (F03) , a path that includes
modules in the previous 3rd secondary device (F04) now addresses the new 3rd secondary device, which
previously was the 4th secondary device (F05) . This change can destroy the functionality of your path
definitions - or it can be intentional.

param frame_id Selects the frame ID Fxx of the secondary switch unit you wish to
delete, starting with F02 (note that the 1st secondary switch unit is the 2nd frame) .
Use the frame ID without quotation marks.

delete_all()→ None

SCPI: CONFigure:FRAMe:DELete:ALL
driver.configure.frame.delete_all()

Deletes all currently defined secondary switch units from the primary switch unit’s internal volatile mem-
ory. Before you delete all secondary switch unit definitions, we recommend using the command method
RsOsp.Configure.Frame.catalog to query all currently defined secondary switch units.

5.1. Configure 33

RsOsp, Release 2.10.17.75

delete_all_with_opc()→ None

SCPI: CONFigure:FRAMe:DELete:ALL
driver.configure.frame.delete_all_with_opc()

Deletes all currently defined secondary switch units from the primary switch unit’s internal volatile mem-
ory. Before you delete all secondary switch unit definitions, we recommend using the command method
RsOsp.Configure.Frame.catalog to query all currently defined secondary switch units.

Same as delete_all, but waits for the operation to complete before continuing further. Use the
RsOsp.utilities.opc_timeout_set() to set the timeout value.

export(slave_config_file: str)→ None

SCPI: CONFigure:FRAMe:EXPort
driver.configure.frame.export(slave_config_file = '1')

Stores the currently defined secondary devices configuration as a nonvolatile file in the compact
flash memory of your primary switch unit. For configuring secondary switch units, see method
RsOsp.Configure.Frame.Define.set. All secondary switch unit configuration filenames have the extension
‘.iconn’. Do not enter the extension when specifying a filename. A filename query does not return the
extension. For example, when you save the interconnection configuration file ‘subunit1’, it is saved as
‘subunit1.iconn’. A query returns this filename as ‘subunit1’, only.

param slave_config_file String parameter to specify the name of the file to be stored.

get_catalog()→ List[str]

SCPI: CONFigure:FRAMe:CATalog
value: List[str] = driver.configure.frame.get_catalog()

Returns a comma-separated configuration list of all ‘frames’ (switch units in single state or in an inter-
connection setup) that are stored in the primary switch unit’s volatile memory. Use the command method
RsOsp.Configure.Frame.export to save the configuration list to the switch unit’s compact flash memory.
The configuration is also saved automatically to the flash memory during the shutdown procedure and
loaded at startup into the volatile memory.

return frame_info_list: The information on each frame comprises the following infor-
mation: Fxx|Address|Status|TransmittedHostname. In detail: - Fxx: Frame ID, where
F01 is the primary switch unit, F02 is the 1st secondary switch unit, F03 is the 2nd
secondary switch unit, and so on. - Address: IP address or configured hostname, as
specified by CONF:FRAM:DEF or in the user interface (‘WebGUI’) at ‘Configuration’
‘Interconnection’ ‘Edit Secondary’ ‘Address:’No address is defined for the primary
switch unit (F01) . For the primary switch unit, the query returns an empty field in the
response string.For primary and secondary switch units that are in ‘Virtual Mode’, the
query returns Not available (virtual frame) in this field. - Status: For example, Single,
Primary, or in the secondary switch units: Connected, Broken (secondary switch unit
not available) , Refused (when trying to configure another primary switch unit as a sec-
ondary switch unit) . - TransmittedHostname: Hostname, if available, or Not available
(virtual frame) .If no address or hostname is defined for an existing frame, for example
due to an incomplete definition in the user interface (‘WebGUI’) , the query returns an
empty field.For example, the response can be ‘F02||Invalid address|’.

set_add(configured_address: str)→ None

34 Chapter 5. RsOsp API Structure

RsOsp, Release 2.10.17.75

SCPI: CONFigure:FRAMe:ADD
driver.configure.frame.set_add(configured_address = '1')

Adds an entry for a secondary switch unit at the end of the list of frame IDs in the switch unit’s internal
volatile memory. The command assigns the next available frame ID to the new secondary switch unit.

param configured_address Specifies the IP address or the hostname of the secondary
switch unit that you want to add.

Subgroups

5.1.1.1 Define

SCPI Commands

CONFigure:FRAMe:DEFine

class Define
Define commands group definition. 1 total commands, 0 Sub-groups, 1 group commands

get(frame_id: str)→ str

SCPI: CONFigure:FRAMe[:DEFine]
value: str = driver.configure.frame.define.get(frame_id = r1)

Defines how an existing secondary switch unit is addressed via LAN by the primary switch unit. To do
so, the command selects a secondary switch unit by its IP address or hostname and allows you to set the
frame ID of this secondary switch unit in the ‘Interconnection’ configuration of the primary switch unit.
Note that this command does not change the network settings or IP address of the primary or secondary
device. It only defines the ID, by which a primary device addresses a secondary device. The query returns
the IP address of the secondary switch unit with the specified frame ID. To query the full list of existing
secondary switch units, use the command method RsOsp.Configure.Frame.catalog. Note that you can add
or insert new secondary switch units with separate commands. The current configuration is always saved
automatically to the flash memory during the shutdown procedure and loaded at startup into the volatile
memory. To save a specific configuration of all frames to a separate file on the switch unit’s compact flash
memory, use the command method RsOsp.Configure.Frame.export.

param frame_id Selects the frame ID Fxx of the secondary switch unit that you wish
to modify, starting with F02 (note that the 1st secondary switch unit is the 2nd frame) .
Use the frame ID without quotation marks. In a setting, if you use F01 or a frame ID,
for which no secondary switch unit is defined, a SCPI error is generated. In a query,
if you use F01, an empty response is returned. If you use a frame ID, for which no
secondary switch unit is defined, a SCPI error is generated.

return configured_address: Specifies the IP address or hostname, at which the sec-
ondary switch unit (selected by the frameId) is available via LAN. Use the address
or hostname in quotation marks.

set(frame_id: str, configured_address: str)→ None

SCPI: CONFigure:FRAMe[:DEFine]
driver.configure.frame.define.set(frame_id = r1, configured_address = '1')

5.1. Configure 35

RsOsp, Release 2.10.17.75

Defines how an existing secondary switch unit is addressed via LAN by the primary switch unit. To do
so, the command selects a secondary switch unit by its IP address or hostname and allows you to set the
frame ID of this secondary switch unit in the ‘Interconnection’ configuration of the primary switch unit.
Note that this command does not change the network settings or IP address of the primary or secondary
device. It only defines the ID, by which a primary device addresses a secondary device. The query returns
the IP address of the secondary switch unit with the specified frame ID. To query the full list of existing
secondary switch units, use the command method RsOsp.Configure.Frame.catalog. Note that you can add
or insert new secondary switch units with separate commands. The current configuration is always saved
automatically to the flash memory during the shutdown procedure and loaded at startup into the volatile
memory. To save a specific configuration of all frames to a separate file on the switch unit’s compact flash
memory, use the command method RsOsp.Configure.Frame.export.

param frame_id Selects the frame ID Fxx of the secondary switch unit that you wish
to modify, starting with F02 (note that the 1st secondary switch unit is the 2nd frame) .
Use the frame ID without quotation marks. In a setting, if you use F01 or a frame ID,
for which no secondary switch unit is defined, a SCPI error is generated. In a query,
if you use F01, an empty response is returned. If you use a frame ID, for which no
secondary switch unit is defined, a SCPI error is generated.

param configured_address Specifies the IP address or hostname, at which the sec-
ondary switch unit (selected by the frameId) is available via LAN. Use the address
or hostname in quotation marks.

5.1.1.2 Insert

SCPI Commands

CONFigure:FRAMe:INSert

class Insert
Insert commands group definition. 1 total commands, 0 Sub-groups, 1 group commands

set(frame_id: str, configured_address: str)→ None

SCPI: CONFigure:FRAMe:INSert
driver.configure.frame.insert.set(frame_id = r1, configured_address = '1')

Inserts an entry for a secondary switch unit ahead of an existing entry in the list of frame IDs in the switch
unit’s internal volatile memory.

param frame_id Specifies the frame ID Fxx, at which the new secondary switch unit
is to be inserted. The lowest accepted frame ID is F02. Existing frame IDs from this
frame ID on are automatically renumbered (incremented by 1) . If the specified frame
ID is not yet defined, a SCPI error is generated.

param configured_address Specifies the IP address or the hostname of the secondary
switch unit that you want to insert.

36 Chapter 5. RsOsp API Structure

RsOsp, Release 2.10.17.75

5.1.1.3 ImportPy

SCPI Commands

CONFigure:FRAMe:IMPort:DELete
CONFigure:FRAMe:IMPort:DELete:ALL
CONFigure:FRAMe:IMPort

class ImportPy
ImportPy commands group definition. 4 total commands, 1 Sub-groups, 3 group commands

delete(slave_config_file: str)→ None

SCPI: CONFigure:FRAMe:IMPort:DELete
driver.configure.frame.importPy.delete(slave_config_file = '1')

Risk of losing settings: Removes the specified interconnection configuration file from the primary switch
unit’s compact flash memory. All secondary switch unit configuration filenames have the extension ‘.iconn’.
Do not enter the extension when specifying a filename. A filename query does not return the extension. For
example, when you save the interconnection configuration file ‘subunit1’, it is saved as ‘subunit1.iconn’. A
query returns this filename as ‘subunit1’, only. Legacy file extensions are still supported.

param slave_config_file String parameter to specify the name of the file to be deleted.
If this file does not exist, a SCPI error is generated. You can query the error with
SYST:ERR?. The result can be, for example: -200,’Execution error;File does not ex-
ist.,CONF:FRAM:IMP:DEL ‘’setup3frameconfigs”’

delete_all(path_information: Optional[str] = None)→ None

SCPI: CONFigure:FRAMe:IMPort:DELete:ALL
driver.configure.frame.importPy.delete_all(path_information = '1')

Risk of losing settings: Removes all interconnection configuration files from the primary switch unit’s com-
pact flash memory. Before you delete all secondary switch unit configuration files, we recommend using
the command method RsOsp. Configure.Frame.ImportPy.Catalog.get_ to query all currently defined
interconnection configuration files. All secondary switch unit configuration filenames have the extension
‘.iconn’. Do not enter the extension when specifying a filename. A filename query does not return the
extension. For example, when you save the interconnection configuration file ‘subunit1’, it is saved as ‘sub-
unit1.iconn’. A query returns this filename as ‘subunit1’, only. Legacy file extensions are still supported.

param path_information No help available

set_value(slave_config_file: str)→ None

SCPI: CONFigure:FRAMe:IMPort
driver.configure.frame.importPy.set_value(slave_config_file = '1')

Loads a secondary devices configuration file from the compact flash memory of your primary switch unit
into its internal volatile memory. As a prerequisite, you must have exported such a file in advance, see
method RsOsp.Configure.Frame. export. All secondary switch unit configuration filenames have the ex-
tension ‘.iconn’. Do not enter the extension when specifying a filename. A filename query does not return
the extension. For example, when you save the interconnection configuration file ‘subunit1’, it is saved
as ‘subunit1.iconn’. A query returns this filename as ‘subunit1’, only. Legacy file extensions are still sup-
ported. Risk of losing settings: Note that this command overwrites the secondary switch units in the current

5.1. Configure 37

RsOsp, Release 2.10.17.75

frames configuration in the primary switch unit’s internal memory with the secondary switch units config-
uration in the loaded file. To avoid losing a current secondary switch units configuration, consider saving
this configuration by method RsOsp.Configure.Frame.export, before you send the import command.

param slave_config_file String parameter to specify the name of the file to be loaded.

Subgroups

5.1.1.3.1 Catalog

SCPI Commands

CONFigure:FRAMe:IMPort:CATalog

class Catalog
Catalog commands group definition. 1 total commands, 0 Sub-groups, 1 group commands

get(path_information: Optional[str] = None)→ List[str]

SCPI: CONFigure:FRAMe:IMPort:CATalog
value: List[str] = driver.configure.frame.importPy.catalog.get(path_information␣
→˓= '1')

Returns the names of all secondary device configuration files that are stored in the switch unit’s flash mem-
ory. All secondary switch unit configuration filenames have the extension ‘.iconn’. Do not enter the exten-
sion when specifying a filename. A filename query does not return the extension. For example, when you
save the interconnection configuration file ‘subunit1’, it is saved as ‘subunit1.iconn’. A query returns this
filename as ‘subunit1’, only.

param path_information No help available

return list_of_exp_slave_configs: Comma-separated list of filenames, each in quotation
marks.

5.1.2 Compatible

SCPI Commands

CONFigure:COMPatible:MODE

class Compatible
Compatible commands group definition. 1 total commands, 0 Sub-groups, 1 group commands

get_mode()→ bool

SCPI: CONFigure:COMPatible[:MODE]
value: bool = driver.configure.compatible.get_mode()

Enables or disables backward compatibility of some currently available RC commands with the syntax of
previous firmware versions, used for the legacy switch units of the R&S OSP1xx family: R&S OSP120,
R&S OSP130 and R&S OSP150. The query returns the state of the compatibility mode. Note that both the
current and the deprecated RC commands always are interpreted correctly by the firmware, independent

38 Chapter 5. RsOsp API Structure

RsOsp, Release 2.10.17.75

of your compatibility settings. However, a query like ‘method RsOsp. Route.Close.set’ returns channel
setting strings in the format ‘F01M01’ with method RsOsp.Configure.Compatible.mode = OFF and in the
format ‘F01A11’ with method RsOsp.Configure.Compatible.mode = ON.

INTRO_CMD_HELP: If the compatibility mode is enabled, the following commands are also
available:

• MMEM:LOAD:STATe (new: method RsOsp.Route.Path.ImportPy.value)

• MMEM:STORe:STATe (new: method RsOsp.Route.Path.export)

• ROUTe:MODule:CATalog?

Note that some commands behave differently with or without the compatibility mode enabled. For example,
method RsOsp. Route.Path.Define.set as a setting accepts both syntax versions F01M01 or F01A11. But
as a query, method RsOsp.Route.Path. Define.set, sent without the compatibility mode enabled, returns the
current syntax. On the contrary, with compatibility mode enabled, it returns the legacy syntax, described
in section method RsOsp.Route.Path.Define.set.

return state: - 1 | ON: The set of RC commands is extended as listed above for backward
compatibility with R&S OSP1xx legacy switch units. - 0 | OFF: The firmware only
accepts the standard set of RC commands. No additional commands are available to
provide backward compatibility.

set_mode(state: bool)→ None

SCPI: CONFigure:COMPatible[:MODE]
driver.configure.compatible.set_mode(state = False)

Enables or disables backward compatibility of some currently available RC commands with the syntax of
previous firmware versions, used for the legacy switch units of the R&S OSP1xx family: R&S OSP120,
R&S OSP130 and R&S OSP150. The query returns the state of the compatibility mode. Note that both the
current and the deprecated RC commands always are interpreted correctly by the firmware, independent
of your compatibility settings. However, a query like ‘method RsOsp. Route.Close.set’ returns channel
setting strings in the format ‘F01M01’ with method RsOsp.Configure.Compatible.mode = OFF and in the
format ‘F01A11’ with method RsOsp.Configure.Compatible.mode = ON.

INTRO_CMD_HELP: If the compatibility mode is enabled, the following commands are also
available:

• MMEM:LOAD:STATe (new: method RsOsp.Route.Path.ImportPy.value)

• MMEM:STORe:STATe (new: method RsOsp.Route.Path.export)

• ROUTe:MODule:CATalog?

Note that some commands behave differently with or without the compatibility mode enabled. For example,
method RsOsp. Route.Path.Define.set as a setting accepts both syntax versions F01M01 or F01A11. But
as a query, method RsOsp.Route.Path. Define.set, sent without the compatibility mode enabled, returns the
current syntax. On the contrary, with compatibility mode enabled, it returns the legacy syntax, described
in section method RsOsp.Route.Path.Define.set.

param state

• 1 | ON: The set of RC commands is extended as listed above for backward compat-
ibility with R&S OSP1xx legacy switch units.

• 0 | OFF: The firmware only accepts the standard set of RC commands. No additional
commands are available to provide backward compatibility.

5.1. Configure 39

RsOsp, Release 2.10.17.75

5.1.3 Virtual

SCPI Commands

CONFigure:VIRTual:MODE

class Virtual
Virtual commands group definition. 1 total commands, 0 Sub-groups, 1 group commands

get_mode()→ bool

SCPI: CONFigure:VIRTual[:MODE]
value: bool = driver.configure.virtual.get_mode()

Activates or deactivates the ‘Virtual Mode’. The query returns the state of the virtual mode.

return state: - 1 | ON: Activates the virtual mode. - 0 | OFF: Deactivates the virtual
mode.

set_mode(state: bool)→ None

SCPI: CONFigure:VIRTual[:MODE]
driver.configure.virtual.set_mode(state = False)

Activates or deactivates the ‘Virtual Mode’. The query returns the state of the virtual mode.

param state

• 1 | ON: Activates the virtual mode.

• 0 | OFF: Deactivates the virtual mode.

5.1.4 MainInfo

SCPI Commands

CONFigure:MAINinfo:TEXT
CONFigure:MAINinfo:PATH

class MainInfo
MainInfo commands group definition. 2 total commands, 0 Sub-groups, 2 group commands

get_path()→ bool

SCPI: CONFigure:MAINinfo:PATH
value: bool = driver.configure.mainInfo.get_path()

Enables or disables displaying the Last Switched Path information in the Main page. This RC command acts
equivalent to the Path Info checkbox in the ‘General’ settings dialog of the user interface. The query method
RsOsp.Configure.MainInfo. path returns the state of this setting. The query method RsOsp.Route.Path.last
returns the information on the Last Switched Path.

return state: - 1 | ON: Displaying the Last Switched Path is enabled. - 0 | OFF: Display-
ing the Last Switched Path is disabled.

40 Chapter 5. RsOsp API Structure

RsOsp, Release 2.10.17.75

get_text()→ str

SCPI: CONFigure:MAINinfo:TEXT
value: str = driver.configure.mainInfo.get_text()

Specifies or queries the text displayed as Customer Text in the Main page. This RC command is equivalent
to the ‘Customer Text’ field in the ‘General’ configuration dialog of the user interface.

return state: Specifies the content of the Customer Info field. Enter the content in paren-
theses.

set_path(state: bool)→ None

SCPI: CONFigure:MAINinfo:PATH
driver.configure.mainInfo.set_path(state = False)

Enables or disables displaying the Last Switched Path information in the Main page. This RC command acts
equivalent to the Path Info checkbox in the ‘General’ settings dialog of the user interface. The query method
RsOsp.Configure.MainInfo. path returns the state of this setting. The query method RsOsp.Route.Path.last
returns the information on the Last Switched Path.

param state

• 1 | ON: Displaying the Last Switched Path is enabled.

• 0 | OFF: Displaying the Last Switched Path is disabled.

set_text(state: str)→ None

SCPI: CONFigure:MAINinfo:TEXT
driver.configure.mainInfo.set_text(state = '1')

Specifies or queries the text displayed as Customer Text in the Main page. This RC command is equivalent
to the ‘Customer Text’ field in the ‘General’ configuration dialog of the user interface.

param state Specifies the content of the Customer Info field. Enter the content in paren-
theses.

5.1.5 PowerUp

SCPI Commands

CONFigure:POWerup:PATH
CONFigure:POWerup:RESet

class PowerUp
PowerUp commands group definition. 2 total commands, 0 Sub-groups, 2 group commands

get_path()→ str

SCPI: CONFigure:POWerup:PATH
value: str = driver.configure.powerUp.get_path()

5.1. Configure 41

RsOsp, Release 2.10.17.75

Sets or queries the switch-on action that determines, which path (if any) is switched after booting the
instrument. This RC command is equivalent to the ‘Switch-On Action’ in the ‘General’ configuration
dialog of the user interface. The query returns the currently set switch-on action.

return path_name: String parameter to specify the path name (see method
RsOsp.Route.Path.Define.set) of the path to be switched at power-up. If you specify
a path name that does not exist, the command has no effect. If you specify an empty
path name string (‘’) , the Switch-On Action is set to None. The switch unit does not
switch any path after being booted.

get_reset()→ bool

SCPI: CONFigure:POWerup:RESet
value: bool = driver.configure.powerUp.get_reset()

Sets or queries the Power Up reset condition of switch modules with latching relays. This setting determines,
how latching relays behave after booting the switch unit. Note that this command does NOT reset the module
OSP B104, which is designed for controlling external latching relays.

INTRO_CMD_HELP: The following rules apply for identifying positions of latching SPDT re-
lays:

• On the relays’ front plates, the positions are labeled as 2 and 1, with 2 being the default
position

• In the graphical user interface (GUI) , the positions are 0 and 1, with 0 being the default
position

• In a remote control command (SCPI) , the positions are 00 and 01, with 00 being the default
value

Hence, if you take the front-plate port labels of a latching SPDT relay, subtract 1 to get the position values
that the software uses for this relay. The query returns the current reset condition.

return state: - 1 | ON: At Power Up, the switch unit handles latching relays as follows:It
sets all latching SPDT relays to the default ports labeled 2, which are represented in
the software by position 0.It sets all latching SPxT relays to the open state. - 0 | OFF:
At Power Up, the switch unit leaves all latching relays keep their previous state.

set_path(path_name: str)→ None

SCPI: CONFigure:POWerup:PATH
driver.configure.powerUp.set_path(path_name = '1')

Sets or queries the switch-on action that determines, which path (if any) is switched after booting the
instrument. This RC command is equivalent to the ‘Switch-On Action’ in the ‘General’ configuration
dialog of the user interface. The query returns the currently set switch-on action.

param path_name String parameter to specify the path name (see method
RsOsp.Route.Path.Define.set) of the path to be switched at power-up. If you
specify a path name that does not exist, the command has no effect. If you specify an
empty path name string (‘’) , the Switch-On Action is set to None. The switch unit
does not switch any path after being booted.

set_reset(state: bool)→ None

42 Chapter 5. RsOsp API Structure

RsOsp, Release 2.10.17.75

SCPI: CONFigure:POWerup:RESet
driver.configure.powerUp.set_reset(state = False)

Sets or queries the Power Up reset condition of switch modules with latching relays. This setting determines,
how latching relays behave after booting the switch unit. Note that this command does NOT reset the module
OSP B104, which is designed for controlling external latching relays.

INTRO_CMD_HELP: The following rules apply for identifying positions of latching SPDT re-
lays:

• On the relays’ front plates, the positions are labeled as 2 and 1, with 2 being the default
position

• In the graphical user interface (GUI) , the positions are 0 and 1, with 0 being the default
position

• In a remote control command (SCPI) , the positions are 00 and 01, with 00 being the default
value

Hence, if you take the front-plate port labels of a latching SPDT relay, subtract 1 to get the position values
that the software uses for this relay. The query returns the current reset condition.

param state

• 1 | ON: At Power Up, the switch unit handles latching relays as follows:It sets all
latching SPDT relays to the default ports labeled 2, which are represented in the
software by position 0.It sets all latching SPxT relays to the open state.

• 0 | OFF: At Power Up, the switch unit leaves all latching relays keep their previous
state.

5.1.6 All

SCPI Commands

CONFigure:ALL:BACKup

class All
All commands group definition. 5 total commands, 1 Sub-groups, 1 group commands

set_backup(filename_for_backup: str)→ None

SCPI: CONFigure:ALL:BACKup
driver.configure.all.set_backup(filename_for_backup = '1')

INTRO_CMD_HELP: Saves all configuration settings to a backup file. These␣
→˓settings comprise the following:

- General configuration
- Network settings
- Trigger configuration (optional)
- Interconnection configuration
- Virtual configuration

5.1. Configure 43

RsOsp, Release 2.10.17.75

All configuration filenames have the extension ‘.backup’. Do not enter the extension when specifying a
filename. A filename query does not return the extension. For example, when you save the ‘Interconnec-
tion’ definition file ‘settings-2018-10-25’, it is saved as ‘settings-2018-10-25.backup’. A query returns this
filename as ‘settings-2018-10-25’, only.

param filename_for_backup String parameter to specify the filename for the backup.

Subgroups

5.1.6.1 Restore

SCPI Commands

CONFigure:ALL:RESTore:DELete
CONFigure:ALL:RESTore:DELete:ALL
CONFigure:ALL:RESTore

class Restore
Restore commands group definition. 4 total commands, 1 Sub-groups, 3 group commands

delete(restore_file_to_delete: str)→ None

SCPI: CONFigure:ALL:RESTore:DELete
driver.configure.all.restore.delete(restore_file_to_delete = '1')

Deletes a selected settings backup file from the switch unit’s internal flash memory. Use the command
method RsOsp. Configure.All.Restore.Catalog.get_ to query the list of available backup files. All con-
figuration filenames have the extension ‘.backup’. Do not enter the extension when specifying a filename.
A filename query does not return the extension. For example, when you save the ‘Interconnection’ defini-
tion file ‘settings-2018-10-25’, it is saved as ‘settings-2018-10-25.backup’. A query returns this filename
as ‘settings-2018-10-25’, only.

param restore_file_to_delete String parameter to select the backup file to be deleted.
If this file does not exist, a SCPI error is generated. You can query the error with
SYST:ERR?. The result can be, for example: -200,’Execution error;File does not ex-
ist.,CONFigure:ALL:RESTore:DELete ‘’backup1”’

delete_all(path_information: Optional[str] = None)→ None

SCPI: CONFigure:ALL:RESTore:DELete:ALL
driver.configure.all.restore.delete_all(path_information = '1')

Risk of losing settings: Removes all settings backup files from the switch unit’s internal memory or from
a removable flash memory. Before you delete all settings backup files, we recommend using the command
method RsOsp.Configure.All. Restore.Catalog.get_ to query the currently defined settings backup files.
All configuration filenames have the extension ‘.backup’. Do not enter the extension when specifying a
filename. A filename query does not return the extension. For example, when you save the ‘Interconnec-
tion’ definition file ‘settings-2018-10-25’, it is saved as ‘settings-2018-10-25.backup’. A query returns this
filename as ‘settings-2018-10-25’, only.

param path_information No help available

set_value(restore_file_to_restore: str)→ None

44 Chapter 5. RsOsp API Structure

RsOsp, Release 2.10.17.75

SCPI: CONFigure:ALL:RESTore
driver.configure.all.restore.set_value(restore_file_to_restore = '1')

Loads a file previously saved as a backup of all settings (see method RsOsp.Configure.All.backup) and uses
it to overwrite the current settings. All configuration filenames have the extension ‘.backup’. Do not enter
the extension when specifying a filename. A filename query does not return the extension. For example,
when you save the ‘Interconnection’ definition file ‘settings-2018-10-25’, it is saved as ‘settings-2018-10-
25.backup’. A query returns this filename as ‘settings-2018-10-25’, only. Risk of losing settings: This com-
mand overwrites all current settings in the switch unit’s internal memory with the settings in the loaded file.
To avoid losing current settings, consider saving these settings by method RsOsp.Configure.All.backup, be-
fore you send the restore command.

param restore_file_to_restore String parameter to select the backup file to be restored.
The user interface (‘WebGUI’) shows only files that were saved in the default directory,
hence, without specifying an additional file path.

Subgroups

5.1.6.1.1 Catalog

SCPI Commands

CONFigure:ALL:RESTore:CATalog

class Catalog
Catalog commands group definition. 1 total commands, 0 Sub-groups, 1 group commands

get(restore_file_info: Optional[str] = None)→ List[str]

SCPI: CONFigure:ALL:RESTore:CATalog
value: List[str] = driver.configure.all.restore.catalog.get(restore_file_info =
→˓'1')

Queries the names of all backup files that are stored in the switch unit’s internal flash memory. Each of
these backup files comprises a full set of switch unit settings. All configuration filenames have the extension
‘.backup’. Do not enter the extension when specifying a filename. A filename query does not return the
extension. For example, when you save the ‘Interconnection’ definition file ‘settings-2018-10-25’, it is
saved as ‘settings-2018-10-25.backup’. A query returns this filename as ‘settings-2018-10-25’, only.

param restore_file_info No help available

return list_of_backup_files: Comma-separated list of filenames, each in quotation
marks. If no files exist, an empty string ‘’ is returned.

5.1. Configure 45

RsOsp, Release 2.10.17.75

5.1.7 Relay

class Relay
Relay commands group definition. 1 total commands, 1 Sub-groups, 0 group commands

Subgroups

5.1.7.1 Delay

SCPI Commands

CONFigure:RELay:DELay

class Delay
Delay commands group definition. 1 total commands, 0 Sub-groups, 1 group commands

get(channel_list: str)→ List[int]

SCPI: CONFigure:RELay:DELay
value: List[int] = driver.configure.relay.delay.get(channel_list = r1)

Sets or queries the command delay times for up to 4 external power-transfer relays connected to the R&S
OSP-B104 Digital I/O Module (EMS) . The delay determines the period of time, which is reserved for a
relay to change its state. Note that these external relays require switching times that are significantly longer
than in most other relays. After receiving a method RsOsp.Route.Close.set command for changing the state
of a connected external relay, the module R&S OSP-B104 behaves as follows:

INTRO_CMD_HELP: Saves all configuration settings to a backup file. These settings comprise
the following:

• It sends the switching pulse during this full period of time

• Then it queries the relay’s current position

• If the current position differs from the target position, the module generates a SCPI error,
which is available via SYST:ERR?

• Then it accepts the next command

You can set delay times to ensure that the switching process of external transfer relays is completed, before
further commands are executed. If you modify a delay time, the new value is stored durable on the module’s
EEPROM memory.

param channel_list List of external transfer relays (connected to module R&S OSP-
B104) and associated delay times to be set or queried. - (@FxxMyy(sssee)): Defines
the channel list for one relay with the following parameters:FxxMyy: as described in
ROUTe:CLOSe.sss = 0 to 255. The digits in front of the last 2 digits (hence, the 1, 2
or 3 leading digits in the parenthesis) represent the 8-bit delay value. The adjustable
delay time has a resolution of 50 ms and spans from 0 to 12.75 seconds (255 x 50 ms
= 12750 ms) . The default value 2 is equivalent to a delay time of 100 ms.ee = 11,
12, 13, 14. The last 2 digits in the parenthesis represent the numbers (‘names’) of the
relays (up to 4) that are connected to the R&S OSP-B104. The numeral offset of 10
distinguishes these relay numbers from the I/O channel numbers 01 to 04 on the same
module.

return delay_factor_list: No help available

46 Chapter 5. RsOsp API Structure

RsOsp, Release 2.10.17.75

set(channel_list: str)→ None

SCPI: CONFigure:RELay:DELay
driver.configure.relay.delay.set(channel_list = r1)

Sets or queries the command delay times for up to 4 external power-transfer relays connected to the R&S
OSP-B104 Digital I/O Module (EMS) . The delay determines the period of time, which is reserved for a
relay to change its state. Note that these external relays require switching times that are significantly longer
than in most other relays. After receiving a method RsOsp.Route.Close.set command for changing the state
of a connected external relay, the module R&S OSP-B104 behaves as follows:

INTRO_CMD_HELP: Saves all configuration settings to a backup file. These settings comprise
the following:

• It sends the switching pulse during this full period of time

• Then it queries the relay’s current position

• If the current position differs from the target position, the module generates a SCPI error,
which is available via SYST:ERR?

• Then it accepts the next command

You can set delay times to ensure that the switching process of external transfer relays is completed, before
further commands are executed. If you modify a delay time, the new value is stored durable on the module’s
EEPROM memory.

param channel_list List of external transfer relays (connected to module R&S OSP-
B104) and associated delay times to be set or queried. - (@FxxMyy(sssee)): Defines
the channel list for one relay with the following parameters:FxxMyy: as described in
ROUTe:CLOSe.sss = 0 to 255. The digits in front of the last 2 digits (hence, the 1, 2
or 3 leading digits in the parenthesis) represent the 8-bit delay value. The adjustable
delay time has a resolution of 50 ms and spans from 0 to 12.75 seconds (255 x 50 ms
= 12750 ms) . The default value 2 is equivalent to a delay time of 100 ms.ee = 11,
12, 13, 14. The last 2 digits in the parenthesis represent the numbers (‘names’) of the
relays (up to 4) that are connected to the R&S OSP-B104. The numeral offset of 10
distinguishes these relay numbers from the I/O channel numbers 01 to 04 on the same
module.

5.1.8 Lock

SCPI Commands

CONFigure:LOCK:MODE

class Lock
Lock commands group definition. 1 total commands, 0 Sub-groups, 1 group commands

get_mode()→ bool

SCPI: CONFigure:LOCK:MODE
value: bool = driver.configure.lock.get_mode()

Enables or disables the lock mode or queries this mode.

5.1. Configure 47

RsOsp, Release 2.10.17.75

return state: - 1 | ON: The switching of relays and the setting of output channels is
locked. - 0 | OFF: Relays and output channels are not locked.

set_mode(state: bool)→ None

SCPI: CONFigure:LOCK:MODE
driver.configure.lock.set_mode(state = False)

Enables or disables the lock mode or queries this mode.

param state

• 1 | ON: The switching of relays and the setting of output channels is locked.

• 0 | OFF: Relays and output channels are not locked.

5.2 Read

class Read
Read commands group definition. 3 total commands, 3 Sub-groups, 0 group commands

Subgroups

5.2.1 Io

class Io
Io commands group definition. 1 total commands, 1 Sub-groups, 0 group commands

Subgroups

5.2.1.1 InputPy

SCPI Commands

READ:IO:IN

class InputPy
InputPy commands group definition. 1 total commands, 0 Sub-groups, 1 group commands

get(modules: str)→ List[int]

SCPI: READ:IO:IN
value: List[int] = driver.read.io.inputPy.get(modules = r1)

Queries the states of all input channels of one or more selected modules. INTRO_CMD_HELP: The
query applies only to modules that have I/O (input / output) channels. For example, the modules
listed below have the following number of channels:

• R&S OSP-B103: 16 input channels

• R&S OSP-B104: 4 input channels

48 Chapter 5. RsOsp API Structure

RsOsp, Release 2.10.17.75

• R&S OSP-B114: 4 input channels

The return value is a set of single integer decimal numbers that represent the state of all queried input
channels per module. Each integer is in the range of 0 to 65535:

INTRO_CMD_HELP: The query applies only to modules that have I/O (input / output) channels.
For example, the modules listed below have the following number of channels:

• 0: all channels are logical 0 or low

• 65535: all channels (maximum 16) are logical 1 or high, where 65535 = 216-1

When converted to a binary number, each 1 or 0 digit shows the state of one channel. This rep-
resentation starts with the lowest digit for channel one, up to the highest digit for channel 16.
See also method RsOsp.Read.Io.InputPy.get_, method RsOsp.Read.Io.InputPy.get_ and method
RsOsp.Read.Io.InputPy.get_.

param modules Selects the modules that you want to query for their I/O channels. Iden-
tify the modules by their frame IDs Fxx and module numbers Myy. For a descrip-
tion of these parameters, refer to method RsOsp.Route.Close.set. Write the com-
bined frame/module names FxxMyy, separated by commas, inside an expression of
two brackets and the ‘@’ sign. Do not use blank spaces or quotation marks in this
expression. Example: (@F01M01,F01M06,F02M03) Only for querying one single
module, you can use syntax without ‘(@. . .) ‘, for example: F01M01 If a module that
you specify does not exist or does not support READ:IO:IN? (having no input chan-
nels) , the query returns no result and a SCPI error is generated. You can query the
error with SYST:ERR?. For example, with a query READ:IO:IN? (@F01M06) , the
result can be: -222,’Data out of range;Invalid index. frame F01: no module connected
to M06,READ:IO:IN? F01M06’ Or with a query READ:IO:IN? (@F01M03) , the re-
sult can be: -170,’Expression error;module on connector M03does not support input
channels,READ:IO:IN? F01M03’

return input_channel_value: Comma-separated list of integer decimal numbers that rep-
resent the queried input channel states as described above.

get_multiple_modules(modules: List[str])→ List[int]
READ:IO:IN

Same as get_single_module(), but for multiple modules.

param modules Example value (without quotes): [‘F01M03’, ‘F01M04’]

get_single_module(module: str)→ List[int]
READ:IO:IN

Same as get(), but you do not need to enter round brackets or the ‘@’ character.

param module example value (without quotes): ‘F01M03’

return input_channel_value: Comma-separated list of integer decimal numbers that rep-
resent the queried input channel states as described above.

5.2. Read 49

RsOsp, Release 2.10.17.75

5.2.2 Module

class Module
Module commands group definition. 1 total commands, 1 Sub-groups, 0 group commands

Subgroups

5.2.2.1 Interlock

SCPI Commands

READ:MODule:INTerlock

class Interlock
Interlock commands group definition. 1 total commands, 0 Sub-groups, 1 group commands

get(modules: str)→ List[bool]

SCPI: READ:MODule:INTerlock
value: List[bool] = driver.read.module.interlock.get(modules = r1)

Queries the interlock state of one or more selected modules. INTRO_CMD_HELP: The query applies
only to modules that have an interlock, as in these modules:

• R&S OSP-B104

• R&S OSP-B114

param modules Selects the modules that you want to query for their interlock states. Iden-
tify the modules by their frame IDs Fxx and module numbers Myy. For a descrip-
tion of these parameters, refer to method RsOsp.Route.Close.set. Write the combined
frame/module names FxxMyy, separated by commas, inside an expression of two brack-
ets and the ‘@’ sign. Do not use blank spaces or quotation marks in this expression.
Example: (@F01M01,F01M06,F02M03) Only for querying one single module, you can
use syntax without ‘(@. . .) ‘, for example: F01M01 If a module that you specify does
not exist or does not support READ:MOD:INT? (having no interlock functionality) , the
query returns no result and a SCPI error is generated. You can query the error with
SYST:ERR?. For example, with a query READ:MOD:INT? (@F01M06) , the result
can be: -222,’Data out of range;Invalid index. frame F01: no module connected to
M06,READ:MOD:INT? F01M06’ Or with a query READ:MOD:INT? (@F01M03) , the
result can be: -170,’Expression error;module on connector M03does not support inter-
lock,READ:MOD:INT? F01M03’

return interlock_state: Comma-separated list of ‘0 | 1’ values that represent the interlock
states. - 0: The interlock of the queried module is in open state, no measurements can be
made. - 1: The interlock of the queried module is in closed state, measurements can proceed
normally.

get_multiple_modules(modules: List[str])→ List[bool]
READ:MODule:INTerlock

Same as get_single_module(), but for multiple channels.

param modules Example value (without quotes): [‘F01M03’, ‘F01M04’]

50 Chapter 5. RsOsp API Structure

RsOsp, Release 2.10.17.75

get_single_module(module: str)→ List[bool]
READ:MODule:INTerlock

Same as get(), but you do not need to enter round brackets or the ‘@’ character.

param module example value (without quotes): ‘F01M03’

5.2.3 Relay

class Relay
Relay commands group definition. 1 total commands, 1 Sub-groups, 0 group commands

Subgroups

5.2.3.1 Operations

SCPI Commands

READ:RELay:OPERations

class Operations
Operations commands group definition. 1 total commands, 0 Sub-groups, 1 group commands

get(channel_list: str)→ List[int]

SCPI: READ:RELay:OPERations
value: List[int] = driver.read.relay.operations.get(channel_list = r1)

Queries the internal switching counter, which acquires the total number of operation cycles of each relay
(and even of I/O channels) . The number of cycles is stored durable in the flash EEPROM of the module
that the relay is part of. Storing occurs after every hour of R&S OSP operation, but only if the number
has changed. Besides this time-controlled storing, also the query command triggers storing the counter’s
value. To make sure not to lose any operation cycle counts, we recommend sending the command method
RsOsp.Read.Relay.Operations.get_ before terminating a remote control session. If the module that you
specify does not have a switching counter, the query always returns the value ‘0’ as the result.

INTRO_CMD_HELP: For example, the following solid-state relay (SSR) modules and digital I/O
modules have no switching counter:

• R&S OSP-B103

• R&S OSP-B107

• R&S OSP-B127

• R&S OSP-B128

• R&S OSP-B142

In the R&S OSP-B104 and R&S OSP-B114, only the electromechanical relay has a switching counter.

param channel_list Specifies the relays and I/O channels to be read. For the channel
list syntax, refer to method RsOsp.Route.Close.set.

return switch_counts: The query returns a comma-separated string with a number for
each relay or channel in the list, in the same order as the channel list is specified.

5.2. Read 51

RsOsp, Release 2.10.17.75

get_multiple_channels(channels: List[str])→ List[int]
READ:RELay:OPERations

Same as get_single_channel(), but for multiple channels.

param channels Example value (without quotes): [‘F01M03(0002)’, ‘F01M04(0003)’]

get_single_channel(channel: str)→ List[int]
READ:RELay:OPERations

Same as get(), but you do not need to enter round brackets or the ‘@’ character.

param channel example value (without quotes): ‘F01M03’

5.3 Route

class Route
Route commands group definition. 13 total commands, 4 Sub-groups, 0 group commands

Subgroups

5.3.1 Close

SCPI Commands

ROUTe:CLOSe

class Close
Close commands group definition. 1 total commands, 0 Sub-groups, 1 group commands

get(channel_list_or_path_name: str)→ List[bool]

SCPI: ROUTe:CLOSe
value: List[bool] = driver.route.close.get(channel_list_or_path_name = r1)

Sets or queries the state of selected relays or I/O channels. The query returns a 1 for each physical state of
a queried relay or channel that is identical with the state specified in the channel list. If the physical state
of a queried relay or channel differs from the state specified in the list, the query returns a 0. Note that for
failsafe (monostable) relays, the query returns the state of the control line, only, while for latched (bistable)
relays, the query always reads the true physical switching state. The parameter <channel list or path name>
is also called the ‘channel list string’. Its basic syntax is as follows: (@FxxMyy(sssee)) Defines the channel
list for just one relay or I/O channel, with the following parameters:

INTRO_CMD_HELP: For example, the following solid-state relay (SSR) modules and digital I/O
modules have no switching counter:

• xx = 01, 02, 03,. . . ,99 (frame ID in, e.g., switch unit name F01)

• yy = 01, 02, 03,. . . ,20 (module ID in, e.g., slot position M02) Note that the slot position is la-
beled with an M, although in the hardware the actual positions are either FS (front slot) or RS
(rear slot) . Using M instead reflects the fact that the firmware can detect only to the mother-
board connector, to which a module is connected. The actual front or rear mounting position
is not detected. In a factory configuration, the correlation of slot positions and connectors
follows the scheme in Figure ‘Top view of the motherboard with its connectors for module

52 Chapter 5. RsOsp API Structure

RsOsp, Release 2.10.17.75

bus cables’. If you mount modules yourself, we recommend using the same correlation. Also
note that the modules are addressed by the syntax M0x, as opposed to the syntax A1x that
was used for the legacy switch units R&S OSP1x0. Setting commands accept both syntax
versions, M0x or A1x. For query commands, to change from one to the other syntax version,
use the command method RsOsp.Configure.Compatible.mode.

• sss = 000 . . . n (state of the element to be controlled in a module) The element can be a relay,
an output channel or another Switchable item. Some system-specific or customer-specific
modules can have different elements. In the string ‘sss’, you can omit leading zeros. Hence,
‘(@FxxMyy(ssee))’ for double-digit states or ‘(@FxxMyy(see))’ for single-digit states are
permissible. The number of available states depends on the module type. Examples are 0 to
1 (for SPDT, DPDT and DP3T relays or I/O channels) , 0 to 6 (for SP6T and 4P6T) , or 0 to
8 (for SP8T) . Some modules, for example the ‘R&S OSP-B104 Digital I/O Module (EMS)
‘, use sss to set a 3-digit state like the delay time. For details, refer to the description of the
module.

• ee = 01 . . . m (number of the element to be controlled in a module) The number of available
elements depends on the module type. Examples are 01 to 06 for the 6 SPDT relays in module
R&S OSP-B101 or 01 to 16 for the 16 output channels in module R&S OSP-B103.

Some special modules also allow a different format, for example eee, if selecting the element requires 3
digits. For details, refer to the description of the module. If you want to address a series of relays or
channels in the command method RsOsp.Route.Close.set, you can use one of the following concatenated
syntax formats: (@FxxMyy(ssee) ,FxxMyy(ssee) , FxxMyy(ssee) ,. . .) Sets selected relays or channels
in selected modules of selected switch units to the specified state. (In each element of the channel list,
replace the parameters xx, yy, ss and ee with arbitrary numbers according to your needs.) Or concate-
nate addressing several relays or channels within a selected module: (@FxxMyy(sxex,syey,szez,. . .))
Sets several relays or channels (with numbers ex, ey, ez, . . .) in one module to individual states (sx,
sy, sz, . . .) . For example, ROUT:CLOS (@F01M11(0102,0104,0105)) sets relays 2, 4 & 5 to state 1.
(@FxxMyy(ssee:ssff)) Sets a continuous range of relays or channels in one module to the same state, with
ff = ee + number of continuous relays. For example, ROUT:CLOS (@F01M11(0101:0105)) is equal to
ROUT:CLOS (@F01M11(0101,0102,0103,0104,0105)).

param channel_list_or_path_name Channel list string as described above, specifying
relays or channels and their states to be set or queried. Instead of an explicit channel list
string, you can use a ‘path name’ (in quotation marks) , previously defined by method
RsOsp.Route.Path.Define.set.

return arg_1: - 1: True, the relay or channel is in the state that is indicated in the channel
list. - 0: False, the relay or channel is not in the state indicated in the channel list.

get_multiple_channels(channels: List[str])→ List[bool]
ROUTe:CLOSe

Same as get_single_channel(), but for multiple channels.

param channels Example value (without quotes): [‘F01M01(0301)’, ‘F02M03(0101)’]

get_path(path_name: str)→ List[bool]
ROUTe:CLOSe

Instead of an explicit channel list string, you can use a “pathName” previously defined by the
RsOsp.Route.Path.Define.set()

Parameters path_name – example of the path_name (without quotes): ‘PathA’

Returns arg_1: - 1: True, the relay or channel is in the state that is indicated in the channel list.
- 0: False, the relay or channel is not in the state indicated in the channel list.

5.3. Route 53

RsOsp, Release 2.10.17.75

get_single_channel(channel: str)→ List[bool]
ROUTe:CLOSe

Same as get(), but you do not need to enter round brackets or the ‘@’ character.

param channel example value (without quotes): ‘F01M01(0301)’

set(channel_list_or_path_name: str)→ None

SCPI: ROUTe:CLOSe
driver.route.close.set(channel_list_or_path_name = r1)

Sets or queries the state of selected relays or I/O channels. The query returns a 1 for each physical state of
a queried relay or channel that is identical with the state specified in the channel list. If the physical state
of a queried relay or channel differs from the state specified in the list, the query returns a 0. Note that for
failsafe (monostable) relays, the query returns the state of the control line, only, while for latched (bistable)
relays, the query always reads the true physical switching state. The parameter <channel list or path name>
is also called the ‘channel list string’. Its basic syntax is as follows: (@FxxMyy(sssee)) Defines the channel
list for just one relay or I/O channel, with the following parameters:

INTRO_CMD_HELP: For example, the following solid-state relay (SSR) modules and digital I/O
modules have no switching counter:

• xx = 01, 02, 03,. . . ,99 (frame ID in, e.g., switch unit name F01)

• yy = 01, 02, 03,. . . ,20 (module ID in, e.g., slot position M02) Note that the slot position is la-
beled with an M, although in the hardware the actual positions are either FS (front slot) or RS
(rear slot) . Using M instead reflects the fact that the firmware can detect only to the mother-
board connector, to which a module is connected. The actual front or rear mounting position
is not detected. In a factory configuration, the correlation of slot positions and connectors
follows the scheme in Figure ‘Top view of the motherboard with its connectors for module
bus cables’. If you mount modules yourself, we recommend using the same correlation. Also
note that the modules are addressed by the syntax M0x, as opposed to the syntax A1x that
was used for the legacy switch units R&S OSP1x0. Setting commands accept both syntax
versions, M0x or A1x. For query commands, to change from one to the other syntax version,
use the command method RsOsp.Configure.Compatible.mode.

• sss = 000 . . . n (state of the element to be controlled in a module) The element can be a relay,
an output channel or another Switchable item. Some system-specific or customer-specific
modules can have different elements. In the string ‘sss’, you can omit leading zeros. Hence,
‘(@FxxMyy(ssee))’ for double-digit states or ‘(@FxxMyy(see))’ for single-digit states are
permissible. The number of available states depends on the module type. Examples are 0 to
1 (for SPDT, DPDT and DP3T relays or I/O channels) , 0 to 6 (for SP6T and 4P6T) , or 0 to
8 (for SP8T) . Some modules, for example the ‘R&S OSP-B104 Digital I/O Module (EMS)
‘, use sss to set a 3-digit state like the delay time. For details, refer to the description of the
module.

• ee = 01 . . . m (number of the element to be controlled in a module) The number of available
elements depends on the module type. Examples are 01 to 06 for the 6 SPDT relays in module
R&S OSP-B101 or 01 to 16 for the 16 output channels in module R&S OSP-B103.

Some special modules also allow a different format, for example eee, if selecting the element requires 3
digits. For details, refer to the description of the module. If you want to address a series of relays or
channels in the command method RsOsp.Route.Close.set, you can use one of the following concatenated
syntax formats: (@FxxMyy(ssee) ,FxxMyy(ssee) , FxxMyy(ssee) ,. . .) Sets selected relays or channels
in selected modules of selected switch units to the specified state. (In each element of the channel list,
replace the parameters xx, yy, ss and ee with arbitrary numbers according to your needs.) Or concate-
nate addressing several relays or channels within a selected module: (@FxxMyy(sxex,syey,szez,. . .))

54 Chapter 5. RsOsp API Structure

RsOsp, Release 2.10.17.75

Sets several relays or channels (with numbers ex, ey, ez, . . .) in one module to individual states (sx,
sy, sz, . . .) . For example, ROUT:CLOS (@F01M11(0102,0104,0105)) sets relays 2, 4 & 5 to state 1.
(@FxxMyy(ssee:ssff)) Sets a continuous range of relays or channels in one module to the same state, with
ff = ee + number of continuous relays. For example, ROUT:CLOS (@F01M11(0101:0105)) is equal to
ROUT:CLOS (@F01M11(0101,0102,0103,0104,0105)).

param channel_list_or_path_name Channel list string as described above, specifying
relays or channels and their states to be set or queried. Instead of an explicit channel list
string, you can use a ‘path name’ (in quotation marks) , previously defined by method
RsOsp.Route.Path.Define.set.

set_multiple_channels(channels: List[str])→ None
ROUTe:CLOSe

Same as set_single_channel(), but for multiple channels

Parameters channels – example value (without quotes): [‘F01M01(0301)’, ‘F02M03(0101)’]

set_path(path_name: str)→ None
ROUTe:CLOSe

Instead of an explicit channel list string, you can use a “pathName” previously defined by the
RsOsp.Route.Path.Define.set()

Parameters path_name – example of the path_name (without quotes): ‘PathA’

set_single_channel(channel: str)→ None
ROUTe:CLOSe

Same as set(), but you do not need to enter round brackets or the ‘@’ character.

Parameters channel – example value (without quotes): ‘F01M01(0301)’

5.3.2 Attenuation

SCPI Commands

ROUTe:ATTenuation

class Attenuation
Attenuation commands group definition. 1 total commands, 0 Sub-groups, 1 group commands

get(channel_list: str)→ List[int]

SCPI: ROUTe:ATTenuation
value: List[int] = driver.route.attenuation.get(channel_list = r1)

Sets or queries the level of attenuation, if a step attenuator is available in the module, for example in the R&S
OSP-B171H and in the R&S OSP-B157WN. Also, you can control attenuators by the standard command
method RsOsp.Route.Close. set, allowing joint control of attenuators and relays, and saving their target
states in joint path definitions. Similar to method RsOsp.Route.Close.set, the parameter <channel list>
uses the following syntax:

INTRO_CMD_HELP: (@FxxMyy(sssee))

• xx = 01, 02, 03,. . . ,99 (frame ID in, e.g., switch unit name F01)

• yy = 01, 02, 03,. . . ,20 (module ID in, e.g., slot position M02)

5.3. Route 55

RsOsp, Release 2.10.17.75

• sss = 000 . . . n (state of the attenuator to be controlled in a module)

• ee = 01 . . . m (element number of the attenuator to be controlled)

For example, in the R&S OSP-B171H: INTRO_CMD_HELP: (@FxxMyy(sssee))

• sss = 000 . . . 015 (attenuator steps)

• ee = 01 . . . 02 (attenuator number in module version .42) ee = 01 . . . 04 (attenuator number in
module version .44)

Note that in the string ‘sss’, you can omit leading zeros.

param channel_list Channel list string as described above, selecting a module and at-
tenuator and specifying the attenuation level to be set. The query also requires the
element number ‘ee’, but it ignores the state information ‘sss’. You can submit the
value of ‘sss’ as 000 (or any arbitrary 3-digit value) , or you can omit it, entering only
ee. The range and interpretation of the state value sss depends on the specific attenuator
used in the module. For details, refer to the module description.

return attenuation_list: No help available

get_multiple_channels(channels: List[str])→ List[int]
ROUTe:ATTenuation

Same as get_single_channel(), but for multiple channels.

param channels Example value (without quotes): [‘F01M03(0002)’, ‘F01M04(0003)’]

get_single_channel(channel: str)→ List[int]
ROUTe:ATTenuation

Same as get(), but you do not need to enter round brackets or the ‘@’ character.

param channel example value (without quotes): ‘F01M03(0001,0002,0003,0004)’

set(channel_list: str)→ None

SCPI: ROUTe:ATTenuation
driver.route.attenuation.set(channel_list = r1)

Sets or queries the level of attenuation, if a step attenuator is available in the module, for example in the R&S
OSP-B171H and in the R&S OSP-B157WN. Also, you can control attenuators by the standard command
method RsOsp.Route.Close. set, allowing joint control of attenuators and relays, and saving their target
states in joint path definitions. Similar to method RsOsp.Route.Close.set, the parameter <channel list>
uses the following syntax:

INTRO_CMD_HELP: (@FxxMyy(sssee))

• xx = 01, 02, 03,. . . ,99 (frame ID in, e.g., switch unit name F01)

• yy = 01, 02, 03,. . . ,20 (module ID in, e.g., slot position M02)

• sss = 000 . . . n (state of the attenuator to be controlled in a module)

• ee = 01 . . . m (element number of the attenuator to be controlled)

For example, in the R&S OSP-B171H: INTRO_CMD_HELP: (@FxxMyy(sssee))

• sss = 000 . . . 015 (attenuator steps)

• ee = 01 . . . 02 (attenuator number in module version .42) ee = 01 . . . 04 (attenuator number in
module version .44)

56 Chapter 5. RsOsp API Structure

RsOsp, Release 2.10.17.75

Note that in the string ‘sss’, you can omit leading zeros.

param channel_list Channel list string as described above, selecting a module and at-
tenuator and specifying the attenuation level to be set. The query also requires the
element number ‘ee’, but it ignores the state information ‘sss’. You can submit the
value of ‘sss’ as 000 (or any arbitrary 3-digit value) , or you can omit it, entering only
ee. The range and interpretation of the state value sss depends on the specific attenuator
used in the module. For details, refer to the module description.

set_multiple_channels(channels: List[str])→ None
ROUTe:ATTenuation

Same as set_single_channel(), but for multiple channels

Parameters channels – example value (without quotes): [‘F01M01(0301)’, ‘F02M03(0101)’]

set_single_channel(channel: str)→ None
ROUTe:ATTenuation

Same as set(), but you do not need to enter round brackets or the ‘@’ character.

Parameters channel – example value (without quotes): ‘F02M03(0101)’

5.3.3 Phase

SCPI Commands

ROUTe:PHASe

class Phase
Phase commands group definition. 1 total commands, 0 Sub-groups, 1 group commands

get(channel_list: str)→ List[int]

SCPI: ROUTe:PHASe
value: List[int] = driver.route.phase.get(channel_list = r1)

Sets or queries the phase angle, if a phase shifter is available in the module. Also, you can control phase
shifters by the standard command method RsOsp.Route.Close.set, allowing joint control of phase shifters
and relays, and saving their target states in joint path definitions. Similar to method RsOsp.Route.Close.set,
the parameter <channel list> uses the following syntax:

INTRO_CMD_HELP: (@FxxMyy(sssee))

• xx = 01, 02, 03,. . . ,99 (frame ID in, e.g., switch unit name F01)

• yy = 01, 02, 03,. . . ,20 (module ID in, e.g., slot position M02)

• sss = 000 . . . n (state of the phase shifter to be controlled in a module)

• ee = 01 . . . m (element number of the phase shifter to be controlled)

Note that in the string ‘sss’, you can omit leading zeros.

param channel_list Channel list string as described above, selecting a module and
phase shifter and specifying the phase angle to be set. The query also requires the
element number ‘ee’, but it ignores the state information ‘sss’. You can submit the
value of ‘sss’ as 000 (or any arbitrary 3-digit value) , or you can omit it, entering only

5.3. Route 57

RsOsp, Release 2.10.17.75

ee. The range and interpretation of the state value sss depends on the specific phase
shifter used in the module. For details, refer to the module description.

return phase_list: No help available

get_multiple_channels(channels: List[str])→ List[int]
ROUTe:PHASe

Same as get_single_channel(), but for multiple channels.

param channels Example value (without quotes): [‘F01M03(0002)’, ‘F01M04(0003)’]

get_single_channel(channel: str)→ List[int]
ROUTe:PHASe

Same as get(), but you do not need to enter round brackets or the ‘@’ character.

param channel example value (without quotes): ‘F01M03(0001,0002,0003,0004)’

set(channel_list: str)→ None

SCPI: ROUTe:PHASe
driver.route.phase.set(channel_list = r1)

Sets or queries the phase angle, if a phase shifter is available in the module. Also, you can control phase
shifters by the standard command method RsOsp.Route.Close.set, allowing joint control of phase shifters
and relays, and saving their target states in joint path definitions. Similar to method RsOsp.Route.Close.set,
the parameter <channel list> uses the following syntax:

INTRO_CMD_HELP: (@FxxMyy(sssee))

• xx = 01, 02, 03,. . . ,99 (frame ID in, e.g., switch unit name F01)

• yy = 01, 02, 03,. . . ,20 (module ID in, e.g., slot position M02)

• sss = 000 . . . n (state of the phase shifter to be controlled in a module)

• ee = 01 . . . m (element number of the phase shifter to be controlled)

Note that in the string ‘sss’, you can omit leading zeros.

param channel_list Channel list string as described above, selecting a module and
phase shifter and specifying the phase angle to be set. The query also requires the
element number ‘ee’, but it ignores the state information ‘sss’. You can submit the
value of ‘sss’ as 000 (or any arbitrary 3-digit value) , or you can omit it, entering only
ee. The range and interpretation of the state value sss depends on the specific phase
shifter used in the module. For details, refer to the module description.

5.3.4 Path

SCPI Commands

ROUTe:PATH:CATalog
ROUTe:PATH:LAST
ROUTe:PATH:DELete:ALL
ROUTe:PATH:EXPort

class Path
Path commands group definition. 10 total commands, 3 Sub-groups, 4 group commands

58 Chapter 5. RsOsp API Structure

RsOsp, Release 2.10.17.75

delete_all()→ None

SCPI: ROUTe:PATH:DELete:ALL
driver.route.path.delete_all()

Deletes all previously defined paths from the switch unit’s internal volatile memory. Before you delete all
paths, we recommend using the command method RsOsp.Route.Path.catalog to query all currently defined
path names.

delete_all_with_opc()→ None

SCPI: ROUTe:PATH:DELete:ALL
driver.route.path.delete_all_with_opc()

Deletes all previously defined paths from the switch unit’s internal volatile memory. Before you delete all
paths, we recommend using the command method RsOsp.Route.Path.catalog to query all currently defined
path names.

Same as delete_all, but waits for the operation to complete before continuing further. Use the
RsOsp.utilities.opc_timeout_set() to set the timeout value.

export(path_config_file: str)→ None

SCPI: ROUTe:PATH:EXPort
driver.route.path.export(path_config_file = '1')

Stores a nonvolatile file in the compact flash memory of an R&S OSP by transferring it from the instrument’s
internal volatile memory. The stored file comprises all currently defined path configurations, see method
RsOsp.Route.Path.Define. set. All path filenames have the extension ‘.path’. Do not enter the extension
when specifying a filename. A filename query does not return the extension. For example, when you save
the path file ‘gen-pa_1’, it is saved as ‘gen-pa_1.path’. A query returns this filename as ‘gen-pa_1’, only.
The command MMEM:STORe:STATe is equivalent with method RsOsp.Route. Path.export.

param path_config_file String parameter to specify the name of the file to be stored.

get_catalog()→ List[str]

SCPI: ROUTe:PATH:CATalog
value: List[str] = driver.route.path.get_catalog()

Returns a list of all currently defined path names in the internal volatile memory of the switch unit. The
query addresses the default directory path ‘/home/instrument/ospdata’ in the internal storage of the R&S
OSP, unless you specify a different directory path, which is optional.

return list_of_path_names: Comma-separated list of path names, each in quotation
marks.

get_last()→ str

SCPI: ROUTe:PATH:LAST
value: str = driver.route.path.get_last()

5.3. Route 59

RsOsp, Release 2.10.17.75

Queries the name of the previously switched path. If the previous switching action was based on
method RsOsp.Route.Close. set + channel list string (rather than a path name) , the response is <In-
dividual Settings>. After a *RST command, the response is <Reset State>. In the main page of
the switch unit’s user interface, the line Last Switched Path (enabled by the ‘Path Info’ setting or
by method RsOsp.Configure.MainInfo.path) shows the same information as the response to method
RsOsp.Route.Path.last.

return path_name: See method RsOsp.Route.Path.Define.set

Subgroups

5.3.4.1 Define

SCPI Commands

ROUTe:PATH:DEFine

class Define
Define commands group definition. 1 total commands, 0 Sub-groups, 1 group commands

List
alias of List

get(path_name: str)→ str

SCPI: ROUTe:PATH[:DEFine]
value: str = driver.route.path.define.get(path_name = '1')

method RsOsp.Route.Path.Define.set or method RsOsp.Route.Path.Define.set defines a path name and the
channel-list string that can be replaced by this path name. A short path name can thus represent a long
list of specific states of relays and I/O channels. Use method RsOsp.Route.Close.set to switch a path. The
query returns the channel list that encodes the defined states for all relays and I/O channels in this path.
Note that in ‘Compatibility Mode’, the query returns a string with syntax that differs from the channel list
(see query example below) .

param path_name String parameter to specify the name of the path to be defined or
queried. Limited to a maximum of 35 characters. Write the path name in quotation
marks. The firmware observes capitalization of the path name. For example, ‘path a’
in lower case is not the same as ‘Path A’ in upper and lower case. A newly defined path
name only exists in the instruments internal volatile memory (RAM) . At shutdown, all
path definitions are saved permanently in the instrument’s flash memory At startup, all
saved path definitions are restored automatically. All new path definitions, which you
made since the last startup, are lost, if you switch off the device by the rear on/off switch.
The same holds true, if you switch off the device by pushing the front PWR key for
more than 10 seconds, or if the firmware crashes. You can trigger immediate storing of
all defined path names in the instrument’s flash memory by using the command method
RsOsp.Route.Path.export.

return channel_list: List of relays and I/O channels and their states to be set, as described
in method RsOsp.Route.Close.set.

set(path_name: str, channel_list: str)→ None

60 Chapter 5. RsOsp API Structure

RsOsp, Release 2.10.17.75

SCPI: ROUTe:PATH[:DEFine]
driver.route.path.define.set(path_name = '1', channel_list = r1)

method RsOsp.Route.Path.Define.set or method RsOsp.Route.Path.Define.set defines a path name and the
channel-list string that can be replaced by this path name. A short path name can thus represent a long
list of specific states of relays and I/O channels. Use method RsOsp.Route.Close.set to switch a path. The
query returns the channel list that encodes the defined states for all relays and I/O channels in this path.
Note that in ‘Compatibility Mode’, the query returns a string with syntax that differs from the channel list
(see query example below) .

param path_name String parameter to specify the name of the path to be defined or
queried. Limited to a maximum of 35 characters. Write the path name in quotation
marks. The firmware observes capitalization of the path name. For example, ‘path a’
in lower case is not the same as ‘Path A’ in upper and lower case. A newly defined path
name only exists in the instruments internal volatile memory (RAM) . At shutdown, all
path definitions are saved permanently in the instrument’s flash memory At startup, all
saved path definitions are restored automatically. All new path definitions, which you
made since the last startup, are lost, if you switch off the device by the rear on/off switch.
The same holds true, if you switch off the device by pushing the front PWR key for
more than 10 seconds, or if the firmware crashes. You can trigger immediate storing of
all defined path names in the instrument’s flash memory by using the command method
RsOsp.Route.Path.export.

param channel_list List of relays and I/O channels and their states to be set, as described
in method RsOsp.Route.Close.set.

set_multiple_channels(path_name: str, channels: List[str])→ None
ROUTe:PATH[:DEFine]

Same as set_single_channel(), but for multiple channels

Parameters

• path_name – String parameter to specify the name of the path to be defined

• channels – example value (without quotes): [‘F01M01(0301)’, ‘F02M03(0101)’]

set_single_channel(path_name: str, channel: str)→ None
ROUTe:PATH[:DEFine]

Same as set(), but you do not need to enter round brackets or the ‘@’ character.

Parameters

• path_name – String parameter to specify the name of the path to be defined

• channel – example value (without quotes): ‘F02M03(0101)’

5.3.4.2 Delete

SCPI Commands

ROUTe:PATH:DELete:NAME

class Delete
Delete commands group definition. 1 total commands, 0 Sub-groups, 1 group commands

set_name(path_name: str)→ None

5.3. Route 61

RsOsp, Release 2.10.17.75

SCPI: ROUTe:PATH:DELete[:NAME]
driver.route.path.delete.set_name(path_name = '1')

Deletes the path specified by the <path name> parameter from the switch unit’s internal volatile memory.
If this path does not exist, the command has no effect.

param path_name See method RsOsp.Route.Path.Define.set.

5.3.4.3 ImportPy

SCPI Commands

ROUTe:PATH:IMPort:DELete
ROUTe:PATH:IMPort:DELete:ALL
ROUTe:PATH:IMPort

class ImportPy
ImportPy commands group definition. 4 total commands, 1 Sub-groups, 3 group commands

class ValueStruct
Structure for setting input parameters. Contains optional set arguments. Fields:

• Import_Filename: str: String parameter to specify the name of the file to be loaded.

• Replace_Or_Keep: enums.ReplaceOrKeep: Optional setting parameter. Optional parameter that decides about keeping or replacing the currently existing path definitions, see ‘Import Paths’. If the parameter is missing, the import is performed in REPLace mode.

– KEEP: Amends the current path definitions in the switch unit’s internal memory with the im-
ported path definitions.However, if you import paths that have the same names as existing paths
in the memory, the imported paths overwrite the existing paths, even if you have specified to
KEEP them.

– REPLace: Discards the current path definitions in the switch unit’s internal memory and re-
places them with the imported path definitions.

delete(path_config_file: str)→ None

SCPI: ROUTe:PATH:IMPort:DELete
driver.route.path.importPy.delete(path_config_file = '1')

Risk of losing settings: Removes the specified path configuration file from the switch unit’s compact flash
memory. All path filenames have the extension ‘.path’. Do not enter the extension when specifying a
filename. A filename query does not return the extension. For example, when you save the path file ‘gen-
pa_1’, it is saved as ‘gen-pa_1.path’. A query returns this filename as ‘gen-pa_1’, only. If the specified
file does not exist, a SCPI error is generated. You can query the error with SYST:ERR?. The result can
be, for example: -200,’Execution error;File does not exist. ,ROUTe:PATH:IMPort:DELete ‘’Path5”’ The
command MMEMory:DELete is equivalent with method RsOsp.Route.Path.ImportPy. delete.

param path_config_file String parameter to specify the name of the file to be deleted.

delete_all(path_information: Optional[str] = None)→ None

SCPI: ROUTe:PATH:IMPort:DELete:ALL
driver.route.path.importPy.delete_all(path_information = '1')

62 Chapter 5. RsOsp API Structure

RsOsp, Release 2.10.17.75

Risk of losing settings: Removes all path configuration files from the switch unit’s compact flash
memory. Before you delete all path configuration files, we recommend using the command method
RsOsp.Route.Path.ImportPy.Catalog. get_ to query all currently defined path configuration files.

param path_information No help available

set_value(value: RsOsp.Implementations.Route_.Path_.ImportPy.ImportPy.ValueStruct)→ None

SCPI: ROUTe:PATH:IMPort
driver.route.path.importPy.set_value(value = ValueStruct())

Loads a set of path configurations from a file on the compact flash memory into the switch unit’s internal
volatile memory. All path filenames have the extension ‘.path’. Do not enter the extension when speci-
fying a filename. A filename query does not return the extension. For example, when you save the path
file ‘gen-pa_1’, it is saved as ‘gen-pa_1.path’. A query returns this filename as ‘gen-pa_1’, only. If the
specified file does not exist, a SCPI error is generated. You can query the error with SYST:ERR?. The
result can be, for example: -200,’Execution error;Restoring device from file /opt/ospn/exportPath5.path
failed,ROUTe:PATH:IMPort ‘’Path5”’ The legacy command MMEM:LOAD:STATe is equivalent with
method RsOsp.Route.Path.ImportPy.value. However, MMEM:LOAD:STATe does not support the param-
eter <import mode>, which is used with method RsOsp.Route.Path.ImportPy.value to specify keeping
or replacing the path definitions (see below) . Risk of losing settings: Note that this command over-
writes all current path definitions in the switch unit’s internal volatile memory with the path definitions
in the loaded file. To avoid losing current path definitions, consider saving these definitions by method
RsOsp.Route.Path.export, before you send the import command.

param value see the help for ValueStruct structure arguments.

Subgroups

5.3.4.3.1 Catalog

SCPI Commands

ROUTe:PATH:IMPort:CATalog

class Catalog
Catalog commands group definition. 1 total commands, 0 Sub-groups, 1 group commands

get(path_information: Optional[str] = None)→ List[str]

SCPI: ROUTe:PATH:IMPort:CATalog
value: List[str] = driver.route.path.importPy.catalog.get(path_information = '1
→˓')

Returns the names of all switching path configuration files that are stored in the switch unit’s flash memory.
All path filenames have the extension ‘.path’. Do not enter the extension when specifying a filename. A
filename query does not return the extension. For example, when you save the path file ‘gen-pa_1’, it is saved
as ‘gen-pa_1.path’. A query returns this filename as ‘gen-pa_1’, only. The command MMEMory:CATalog?
is equivalent with method RsOsp.Route. Path.ImportPy.Catalog.get_

param path_information No help available

return list_of_exp_path_configs: Comma-separated list of filenames, each in quotation
marks.

5.3. Route 63

RsOsp, Release 2.10.17.75

5.4 Diagnostic

class Diagnostic
Diagnostic commands group definition. 6 total commands, 1 Sub-groups, 0 group commands

Subgroups

5.4.1 Service

SCPI Commands

DIAGnostic:SERVice:HWINfo

class Service
Service commands group definition. 6 total commands, 2 Sub-groups, 1 group commands

get_hw_info()→ List[str]

SCPI: DIAGnostic:SERVice:HWINfo
value: List[str] = driver.diagnostic.service.get_hw_info()

Returns information about all hardware components (motherboards and modules) that are part of the com-
plete system of one or several R&S OSP instruments.

INTRO_CMD_HELP: The returned component information consists of:

• Location ID (= switch unit and module number, for example, frame F01 is the primary device,
frame F02 is the first secondary device, M00 is the primary device’s motherboard, M01 is the
module connected to the connector M01)

• Name (for example, OSPMAINBOARD, OSP220, OSP230, OSP320, OSP-B101)

• Serial number (for example, 100173)

• Part number (= order number, for example, 1528.3105.03)

• Hardware code:

INTRO_CMD_HELP: The returned component information consists of:

• Modules that are controlled via 1 module bus typically return the code 0

• Modules that are controlled via 2 module buses return the codes 1 for the first control board
and 2 for the second control board

• Product index (model iteration of a hardware version, for example, 01.00)

return hw_info_list: The response is a string in following format: loca-
tion|name|sn_nbr|part_nbr| hardware_code|product_index

64 Chapter 5. RsOsp API Structure

RsOsp, Release 2.10.17.75

Subgroups

5.4.1.1 Module

class Module
Module commands group definition. 3 total commands, 3 Sub-groups, 0 group commands

Subgroups

5.4.1.1.1 HwInfo

SCPI Commands

DIAGnostic:SERVice:MODule:HWINfo

class HwInfo
HwInfo commands group definition. 1 total commands, 0 Sub-groups, 1 group commands

get(modules: str)→ List[str]

SCPI: DIAGnostic:SERVice:MODule:HWINfo
value: List[str] = driver.diagnostic.service.module.hwInfo.get(modules = r1)

The setting command can make modules update their hardware configuration. The command is imple-
mented for all modules, but it was developed especially for system modules that can have submodules
attached. The command allows updating such submodules in the firmware during operation. For modules
that cannot update any hardware configuration, the command has no effect. The query command returns the
most recently updated hardware configuration. Modules, which support this query, reply with an individual,
module-specific return string. All other modules reply with an empty string ‘’.

param modules The command addresses the modules by the following syntax, like the
module names string in method RsOsp.Read.Io.InputPy.get_: xx = 01, 02, 03,. . . ,99
(frame ID in, e.g., switch unit name F01) yy = 01, 02, 03,. . . ,20 (module ID in, e.g.,
slot position M02)

return hw_info: No help available

set(modules: str)→ None

SCPI: DIAGnostic:SERVice:MODule:HWINfo
driver.diagnostic.service.module.hwInfo.set(modules = r1)

The setting command can make modules update their hardware configuration. The command is imple-
mented for all modules, but it was developed especially for system modules that can have submodules
attached. The command allows updating such submodules in the firmware during operation. For modules
that cannot update any hardware configuration, the command has no effect. The query command returns the
most recently updated hardware configuration. Modules, which support this query, reply with an individual,
module-specific return string. All other modules reply with an empty string ‘’.

param modules The command addresses the modules by the following syntax, like the
module names string in method RsOsp.Read.Io.InputPy.get_: xx = 01, 02, 03,. . . ,99
(frame ID in, e.g., switch unit name F01) yy = 01, 02, 03,. . . ,20 (module ID in, e.g.,
slot position M02)

5.4. Diagnostic 65

RsOsp, Release 2.10.17.75

5.4.1.1.2 Temperature

SCPI Commands

DIAGnostic:SERVice:MODule:TEMPerature

class Temperature
Temperature commands group definition. 1 total commands, 0 Sub-groups, 1 group commands

get(modules: str)→ List[float]

SCPI: DIAGnostic:SERVice:MODule:TEMPerature
value: List[float] = driver.diagnostic.service.module.temperature.get(modules =␣
→˓r1)

Queries the temperature of selected modules in degrees centigrade.

param modules The command addresses the modules by the following syntax, like the
module names string in method RsOsp.Read.Io.InputPy.get_: xx = 01, 02, 03,. . . ,99
(frame ID in, e.g., switch unit name F01) yy = 01, 02, 03,. . . ,20 (module ID in, e.g.,
slot position M02)

return temperature_value: No help available

5.4.1.1.3 Function

SCPI Commands

DIAGnostic:SERVice:MODule:FUNCtion

class Function
Function commands group definition. 1 total commands, 0 Sub-groups, 1 group commands

get(modules: str, function: str)→ List[str]

SCPI: DIAGnostic:SERVice:MODule:FUNCtion
value: List[str] = driver.diagnostic.service.module.function.get(modules = r1,␣
→˓function = '1')

No command help available

param modules No help available

param function No help available

return response: No help available

set(modules: str, function: str)→ None

SCPI: DIAGnostic:SERVice:MODule:FUNCtion
driver.diagnostic.service.module.function.set(modules = r1, function = '1')

No command help available

66 Chapter 5. RsOsp API Structure

RsOsp, Release 2.10.17.75

param modules No help available

param function No help available

5.4.1.2 User

SCPI Commands

DIAGnostic:SERVice:USER:ERRor
DIAGnostic:SERVice:USER:WARNing

class User
User commands group definition. 2 total commands, 0 Sub-groups, 2 group commands

get_error()→ List[str]

SCPI: DIAGnostic:SERVice:USER:ERRor
value: List[str] = driver.diagnostic.service.user.get_error()

Queries for device errors that were not necessarily evoked by a remote control command. Typically, use
this query for errors that may have come up during booting.

return user_error_list: No help available

get_warning_py()→ List[str]

SCPI: DIAGnostic:SERVice:USER:WARNing
value: List[str] = driver.diagnostic.service.user.get_warning_py()

Queries for device warnings that were not necessarily evoked by a remote control command. Typically, use
this query for warnings that may have come up during booting.

return user_warning_list: No help available

5.5 Trigger

SCPI Commands

TRIGger:STATe
TRIGger:TYPE
TRIGger:INDex
TRIGger:EXPort

class Trigger
Trigger commands group definition. 17 total commands, 5 Sub-groups, 4 group commands

export(trigger_config_file: str)→ None

SCPI: TRIGger:EXPort
driver.trigger.export(trigger_config_file = '1')

5.5. Trigger 67

RsOsp, Release 2.10.17.75

Stores the currently defined trigger configuration as a nonvolatile file in the compact flash memory of your
primary switch unit.

param trigger_config_file String parameter to specify the name of the file to be stored.

get_index()→ int

SCPI: TRIGger:INDex
value: int = driver.trigger.get_index()

Queries the trigger index, which is the number of the currently triggered path in the trigger types described below.
INTRO_CMD_HELP: The returned component information consists of:

• ‘Toggle A-B’, the index has the following meaning:

INTRO_CMD_HELP: The returned component information consists of:

• -1 = no trigger event yet, method RsOsp.Trigger.Count.value = 0

• 0 = Path A

• 1 = Path B

• ‘Sequenced’, the index has the following meaning:

INTRO_CMD_HELP: The returned component information consists of:

• -1 = no trigger event yet, method RsOsp.Trigger.Count.value = 0

• 0 = Path 0

• 1 = Path 1

• 2 = Path 2

• . . .

• 15 = Path 15

return index: No help available

get_state()→ bool

SCPI: TRIGger:STATe
value: bool = driver.trigger.get_state()

Sets or queries the activation state of the trigger functionality.

return activation_state: No help available

get_type_py()→ RsOsp.enums.TriggerType

SCPI: TRIGger:TYPE
value: enums.TriggerType = driver.trigger.get_type_py()

Selects or queries the trigger type.

return type_py: No help available

set_state(activation_state: bool)→ None

68 Chapter 5. RsOsp API Structure

RsOsp, Release 2.10.17.75

SCPI: TRIGger:STATe
driver.trigger.set_state(activation_state = False)

Sets or queries the activation state of the trigger functionality.

param activation_state

• OFF: Deactivates the trigger functionality. The command does not accept ‘0’ instead
of ‘OFF’.

• ON: Activates the trigger functionality. The command does not accept ‘1’ instead
of ‘ON’.

set_type_py(type_py: RsOsp.enums.TriggerType)→ None

SCPI: TRIGger:TYPE
driver.trigger.set_type_py(type_py = enums.TriggerType.ADDRessed)

Selects or queries the trigger type.

param type_py

• SINGle: Selects the trigger type Single.

• TOGGle: Selects the trigger type Toggle A-B.

• SEQuenced: Selects the trigger type Sequenced.

• ADDRessed: Selects the trigger type Addressed.

Subgroups

5.5.1 Signal

SCPI Commands

TRIGger:SIGNal:LEVel
TRIGger:SIGNal:SLOPe
TRIGger:SIGNal:TERMination

class Signal
Signal commands group definition. 3 total commands, 0 Sub-groups, 3 group commands

get_level()→ float

SCPI: TRIGger:SIGNal:LEVel
value: float = driver.trigger.signal.get_level()

Sets or queries the voltage level, which defines the threshold for a trigger event. The level setting is not
influenced by reset commands.

return level: No help available

get_slope()→ RsOsp.enums.TriggerSlope

5.5. Trigger 69

RsOsp, Release 2.10.17.75

SCPI: TRIGger:SIGNal:SLOPe
value: enums.TriggerSlope = driver.trigger.signal.get_slope()

Sets or queries, which kind of threshold transition is interpreted as a trigger event. For the threshold level,
see method RsOsp.Trigger.Signal.level.

return slope: - POSitive: Defines interpreting a positive (low-to-high) transition of the
threshold as a trigger event. - NEGative: Defines interpreting a negative (high-to-low)
transition of the threshold as a trigger event. - BOTH: Defines interpreting a positive
or a negative transition of the threshold as a trigger event.Equivalent with Any in the
user interface (‘WebGUI’) .

get_termination()→ float

SCPI: TRIGger:SIGNal:TERMination
value: float = driver.trigger.signal.get_termination()

Sets or queries the type of termination of the trigger signal cable.

return termination: No help available

set_level(level: float)→ None

SCPI: TRIGger:SIGNal:LEVel
driver.trigger.signal.set_level(level = 1.0)

Sets or queries the voltage level, which defines the threshold for a trigger event. The level setting is not
influenced by reset commands.

param level Specifies the voltage level. Factory default is 2.5 V.

set_slope(slope: RsOsp.enums.TriggerSlope)→ None

SCPI: TRIGger:SIGNal:SLOPe
driver.trigger.signal.set_slope(slope = enums.TriggerSlope.BOTH)

Sets or queries, which kind of threshold transition is interpreted as a trigger event. For the threshold level,
see method RsOsp.Trigger.Signal.level.

param slope

• POSitive: Defines interpreting a positive (low-to-high) transition of the threshold as
a trigger event.

• NEGative: Defines interpreting a negative (high-to-low) transition of the threshold
as a trigger event.

• BOTH: Defines interpreting a positive or a negative transition of the threshold as a
trigger event.Equivalent with Any in the user interface (‘WebGUI’) .

set_termination(termination: float)→ None

SCPI: TRIGger:SIGNal:TERMination
driver.trigger.signal.set_termination(termination = 1.0)

Sets or queries the type of termination of the trigger signal cable.

70 Chapter 5. RsOsp API Structure

RsOsp, Release 2.10.17.75

param termination

• 50OHM: Sets the termination to 50 Ohm.Also accepted parameter syntax: ‘50’ or
‘50 ohm’ (a blank and all capital/small letters are ignored) .

• HIGH: Sets the termination to High, equivalent with High Impedance in the user
interface (‘WebGUI’) .Also accepted parameter syntax: ‘high’ (capital/small letters
are ignored) .

5.5.2 Sequence

class Sequence
Sequence commands group definition. 3 total commands, 1 Sub-groups, 0 group commands

Subgroups

5.5.2.1 Define

SCPI Commands

TRIGger:SEQuence:DEFine:ALL
TRIGger:SEQuence:DEFine:LENGth

class Define
Define commands group definition. 3 total commands, 1 Sub-groups, 2 group commands

get_all()→ List[str]

SCPI: TRIGger:SEQuence:DEFine:ALL
value: List[str] = driver.trigger.sequence.define.get_all()

Sets several or all paths for the sequenced trigger. The query returns all path names.

return path_name: No help available

get_length()→ int

SCPI: TRIGger:SEQuence:DEFine:LENGth
value: int = driver.trigger.sequence.define.get_length()

Sets or queries the length of the sequence for the Sequenced trigger.

return length: No help available

set_all(path_name: List[str])→ None

SCPI: TRIGger:SEQuence:DEFine:ALL
driver.trigger.sequence.define.set_all(path_name = ['1', '2', '3'])

Sets several or all paths for the sequenced trigger. The query returns all path names.

param path_name Specifies all path names for the trigger sequence. Separate the path
names by commas and write each path name in quotation marks.

5.5. Trigger 71

RsOsp, Release 2.10.17.75

set_length(length: int)→ None

SCPI: TRIGger:SEQuence:DEFine:LENGth
driver.trigger.sequence.define.set_length(length = 1)

Sets or queries the length of the sequence for the Sequenced trigger.

param length No help available

Subgroups

5.5.2.1.1 Entry

SCPI Commands

TRIGger:SEQuence:DEFine:ENTRy

class Entry
Entry commands group definition. 1 total commands, 0 Sub-groups, 1 group commands

get(index: int)→ str

SCPI: TRIGger:SEQuence:DEFine[:ENTRy]
value: str = driver.trigger.sequence.define.entry.get(index = 1)

Sets or queries the path, which is defined for the selected number in the sequence.

param index Selects a number in the trigger sequence.

return path_name: No help available

set(index: int, path_name: str)→ None

SCPI: TRIGger:SEQuence:DEFine[:ENTRy]
driver.trigger.sequence.define.entry.set(index = 1, path_name = '1')

Sets or queries the path, which is defined for the selected number in the sequence.

param index Selects a number in the trigger sequence.

param path_name Specifies the path name to be set for the selected number in the trig-
ger sequence. Write the path name in quotation marks.

5.5.3 Execute

SCPI Commands

TRIGger:EXECute

class Execute
Execute commands group definition. 1 total commands, 0 Sub-groups, 1 group commands

72 Chapter 5. RsOsp API Structure

RsOsp, Release 2.10.17.75

set(type_py: Optional[RsOsp.enums.TriggerExecType] = None)→ None

SCPI: TRIGger:EXECute
driver.trigger.execute.set(type_py = enums.TriggerExecType.RESet)

Sends a software trigger event or resets the trigger sequence.

param type_py

• TRIGger: TRIG:EXEC TRIG sends software trigger event, equivalent with the
‘Manual Trigger’.

• RESet: TRIG:EXEC RES resets the sequence of the ‘Sequenced’ trigger.

5.5.4 Count

SCPI Commands

TRIGger:COUNt:VALue
TRIGger:COUNt:OVERflow

class Count
Count commands group definition. 2 total commands, 0 Sub-groups, 2 group commands

get_overflow()→ bool

SCPI: TRIGger:COUNt:OVERflow
value: bool = driver.trigger.count.get_overflow()

Queries, if a trigger overflow has happened since the last activation of the trigger functionality. If the trigger
input connectors of the switch unit receive input signals faster than the firmware can process, it cannot count
all trigger events, and it cannot update the trigger counter correctly. You can use the command to check, if
this case has occurred since the last trigger activation.

return overflow: No help available

get_value()→ int

SCPI: TRIGger:COUNt[:VALue]
value: int = driver.trigger.count.get_value()

Queries the trigger count, hence the number of executed trigger events since the last activation of the trigger
functionality.

return count: No help available

5.5. Trigger 73

RsOsp, Release 2.10.17.75

5.5.5 ImportPy

SCPI Commands

TRIGger:IMPort:DELete
TRIGger:IMPort:DELete:ALL
TRIGger:IMPort

class ImportPy
ImportPy commands group definition. 4 total commands, 1 Sub-groups, 3 group commands

delete(trigger_config_file: str)→ None

SCPI: TRIGger:IMPort:DELete
driver.trigger.importPy.delete(trigger_config_file = '1')

Risk of losing settings: Removes the specified trigger configuration file from the primary switch unit’s
compact flash memory. All trigger configuration filenames have the extension ‘.trigger’. Do not enter the
extension when specifying a filename. A filename query does not return the extension. For example, when
you save the trigger configuration file ‘trg42’, it is saved as ‘trg42.trigger’. A query returns this filename as
‘trg42’, only.

param trigger_config_file String parameter to specify the name of the file to be deleted.
If this file does not exist, a SCPI error is generated. You can query the error with
SYST:ERR?. The result can be, for example: -200,’Execution error;File does not ex-
ist.,TRIG:IMP:DEL ‘’sequencedtrig2”’

delete_all(path_information: Optional[str] = None)→ None

SCPI: TRIGger:IMPort:DELete:ALL
driver.trigger.importPy.delete_all(path_information = '1')

Risk of losing settings: Removes all trigger configuration files from the primary switch unit’s compact
flash memory. Before you delete all trigger configuration files, we recommend using the command method
RsOsp.Trigger.ImportPy.Catalog. get_ to query all currently stored trigger configuration files. All trigger
configuration filenames have the extension ‘. trigger’. Do not enter the extension when specifying a file-
name. A filename query does not return the extension. For example, when you save the trigger configuration
file ‘trg42’, it is saved as ‘trg42.trigger’. A query returns this filename as ‘trg42’, only.

param path_information No help available

set_value(import_filename: str)→ None

SCPI: TRIGger:IMPort
driver.trigger.importPy.set_value(import_filename = '1')

Loads a trigger configuration file from the compact flash memory of your primary switch unit into its
internal volatile memory. As a prerequisite, you must have exported such a file in advance, see method
RsOsp.Trigger.export. All trigger configuration filenames have the extension ‘.trigger’. Do not enter the
extension when specifying a filename. A filename query does not return the extension. For example, when
you save the trigger configuration file ‘trg42’, it is saved as ‘trg42.trigger’. A query returns this filename as
‘trg42’, only. Risk of losing settings: Note that this command overwrites the current trigger configuration
in the primary switch unit’s internal memory with the trigger configuration in the loaded file. To avoid

74 Chapter 5. RsOsp API Structure

RsOsp, Release 2.10.17.75

losing a current trigger configuration, consider saving this configuration by method RsOsp. Trigger.export,
before you send the import command.

param import_filename String parameter to specify the name of the file to be stored.

Subgroups

5.5.5.1 Catalog

SCPI Commands

TRIGger:IMPort:CATalog

class Catalog
Catalog commands group definition. 1 total commands, 0 Sub-groups, 1 group commands

get(path_information: Optional[str] = None)→ List[str]

SCPI: TRIGger:IMPort:CATalog
value: List[str] = driver.trigger.importPy.catalog.get(path_information = '1')

Returns a list of trigger configurations that are stored in the primary switch unit’s volatile memory.

param path_information The reply is a comma-separated list of the exported trigger
configuration filenames.

return list_of_exp_trigger_configs: No help available

5.5. Trigger 75

RsOsp, Release 2.10.17.75

76 Chapter 5. RsOsp API Structure

CHAPTER

SIX

RSOSP UTILITIES

class Utilities
Common utility class. Utility functions common for all types of drivers.

Access snippet: utils = RsOsp.utilities

property logger: RsOsp.Internal.ScpiLogger.ScpiLogger
Scpi Logger interface, see here

Access snippet: logger = RsOsp.utilities.logger

property driver_version: str
Returns the instrument driver version.

property idn_string: str
Returns instrument’s identification string - the response on the SCPI command *IDN?

property manufacturer: str
Returns manufacturer of the instrument.

property full_instrument_model_name: str
Returns the current instrument’s full name e.g. ‘FSW26’.

property instrument_model_name: str
Returns the current instrument’s family name e.g. ‘FSW’.

property supported_models: List[str]
Returns a list of the instrument models supported by this instrument driver.

property instrument_firmware_version: str
Returns instrument’s firmware version.

property instrument_serial_number: str
Returns instrument’s serial_number.

query_opc(timeout: int = 0)→ int
SCPI command: *OPC? Queries the instrument’s OPC bit and hence it waits until the instrument reports
operation complete. If you define timeout > 0, the VISA timeout is set to that value just for this method
call.

property instrument_status_checking: bool
Sets / returns Instrument Status Checking. When True (default is True), all the driver methods and proper-
ties are sending “SYSTem:ERRor?” at the end to immediately react on error that might have occurred. We
recommend to keep the state checking ON all the time. Switch it OFF only in rare cases when you require
maximum speed. The default state after initializing the session is ON.

property opc_query_after_write: bool
Sets / returns Instrument *OPC? query sending after each command write. When True, (default is False)

77

RsOsp, Release 2.10.17.75

the driver sends *OPC? every time a write command is performed. Use this if you want to make sure your
sequence is performed command-after-command.

property bin_float_numbers_format: RsOsp.Internal.Conversions.BinFloatFormat
Sets / returns format of float numbers when transferred as binary data.

property bin_int_numbers_format: RsOsp.Internal.Conversions.BinIntFormat
Sets / returns format of integer numbers when transferred as binary data.

clear_status()→ None
Clears instrument’s status system, the session’s I/O buffers and the instrument’s error queue.

query_all_errors()→ List[str]
Queries and clears all the errors from the instrument’s error queue. The method returns list of strings
as error messages. If no error is detected, the return value is None. The process is: querying ‘SYS-
Tem:ERRor?’ in a loop until the error queue is empty. If you want to include the error codes, call the
query_all_errors_with_codes()

query_all_errors_with_codes()→ List[Tuple[int, str]]
Queries and clears all the errors from the instrument’s error queue. The method returns list of tuples
(code: int, message: str). If no error is detected, the return value is None. The process is: querying
‘SYSTem:ERRor?’ in a loop until the error queue is empty.

property instrument_options: List[str]
Returns all the instrument options. The options are sorted in the ascending order starting with K-options
and continuing with B-options.

reset()→ None
SCPI command: *RST Sends *RST command + calls the clear_status().

self_test(timeout: Optional[int] = None)→ Tuple[int, str]
SCPI command: *TST? Performs instrument’s selftest. Returns tuple (code:int, message: str). Code 0
means the self-test passed. You can define the custom timeout in milliseconds. If you do not define it, the
default selftest timeout is used (usually 60 secs).

is_connection_active()→ bool
Returns true, if the VISA connection is active and the communication with the instrument still works.

reconnect(force_close: bool = False)→ bool
If the connection is not active, the method tries to reconnect to the device If the connection is active, and
force_close is False, the method does nothing. If the connection is active, and force_close is True, the
method closes, and opens the session again. Returns True, if the reconnection has been performed.

property resource_name: int
Returns the resource name used in the constructor

property opc_timeout: int
Sets / returns timeout in milliseconds for all the operations that use OPC synchronization.

property visa_timeout: int
Sets / returns visa IO timeout in milliseconds.

property data_chunk_size: int
Sets / returns the maximum size of one block transferred during write/read operations

property visa_manufacturer: int
Returns the manufacturer of the current VISA session.

process_all_commands()→ None
SCPI command: *WAI Stops further commands processing until all commands sent before *WAI have
been executed.

78 Chapter 6. RsOsp Utilities

RsOsp, Release 2.10.17.75

write_str(cmd: str)→ None
Writes the command to the instrument.

write(cmd: str)→ None
This method is an alias to the write_str(). Writes the command to the instrument as string.

write_int(cmd: str, param: int)→ None
Writes the command to the instrument followed by the integer parameter: e.g.: cmd = ‘SELECT:INPUT’
param = ‘2’, result command = ‘SELECT:INPUT 2’

write_int_with_opc(cmd: str, param: int, timeout: Optional[int] = None)→ None
Writes the command with OPC to the instrument followed by the integer parameter: e.g.: cmd = ‘SE-
LECT:INPUT’ param = ‘2’, result command = ‘SELECT:INPUT 2’ If you do not provide timeout, the
method uses current opc_timeout.

write_float(cmd: str, param: float)→ None
Writes the command to the instrument followed by the boolean parameter: e.g.: cmd = ‘CENTER:FREQ’
param = ‘10E6’, result command = ‘CENTER:FREQ 10E6’

write_float_with_opc(cmd: str, param: float, timeout: Optional[int] = None)→ None
Writes the command with OPC to the instrument followed by the boolean parameter: e.g.: cmd = ‘CEN-
TER:FREQ’ param = ‘10E6’, result command = ‘CENTER:FREQ 10E6’ If you do not provide timeout,
the method uses current opc_timeout.

write_bool(cmd: str, param: bool)→ None
Writes the command to the instrument followed by the boolean parameter: e.g.: cmd = ‘OUTPUT’ param
= ‘True’, result command = ‘OUTPUT ON’

write_bool_with_opc(cmd: str, param: bool, timeout: Optional[int] = None)→ None
Writes the command with OPC to the instrument followed by the boolean parameter: e.g.: cmd = ‘OUT-
PUT’ param = ‘True’, result command = ‘OUTPUT ON’ If you do not provide timeout, the method uses
current opc_timeout.

query_str(query: str)→ str
Sends the query to the instrument and returns the response as string. The response is trimmed of any trailing
LF characters and has no length limit.

query(query: str)→ str
This method is an alias to the query_str(). Sends the query to the instrument and returns the response as
string. The response is trimmed of any trailing LF characters and has no length limit.

query_bool(query: str)→ bool
Sends the query to the instrument and returns the response as boolean.

query_int(query: str)→ int
Sends the query to the instrument and returns the response as integer.

query_float(query: str)→ float
Sends the query to the instrument and returns the response as float.

write_str_with_opc(cmd: str, timeout: Optional[int] = None)→ None
Writes the opc-synced command to the instrument. If you do not provide timeout, the method uses current
opc_timeout.

write_with_opc(cmd: str, timeout: Optional[int] = None)→ None
This method is an alias to the write_str_with_opc(). Writes the opc-synced command to the instrument. If
you do not provide timeout, the method uses current opc_timeout.

query_str_with_opc(query: str, timeout: Optional[int] = None)→ str
Sends the opc-synced query to the instrument and returns the response as string. The response is trimmed
of any trailing LF characters and has no length limit. If you do not provide timeout, the method uses current

79

RsOsp, Release 2.10.17.75

opc_timeout.

query_with_opc(query: str, timeout: Optional[int] = None)→ str
This method is an alias to the query_str_with_opc(). Sends the opc-synced query to the instrument and
returns the response as string. The response is trimmed of any trailing LF characters and has no length
limit. If you do not provide timeout, the method uses current opc_timeout.

query_bool_with_opc(query: str, timeout: Optional[int] = None)→ bool
Sends the opc-synced query to the instrument and returns the response as boolean. If you do not provide
timeout, the method uses current opc_timeout.

query_int_with_opc(query: str, timeout: Optional[int] = None)→ int
Sends the opc-synced query to the instrument and returns the response as integer. If you do not provide
timeout, the method uses current opc_timeout.

query_float_with_opc(query: str, timeout: Optional[int] = None)→ float
Sends the opc-synced query to the instrument and returns the response as float. If you do not provide
timeout, the method uses current opc_timeout.

write_bin_block(cmd: str, payload: bytes)→ None
Writes all the payload as binary data block to the instrument. The binary data header is added at the
beginning of the transmission automatically, do not include it in the payload!!!

query_bin_block(query: str)→ bytes
Queries binary data block to bytes. Throws an exception if the returned data was not a binary data. Returns
data:bytes

query_bin_block_with_opc(query: str, timeout: Optional[int] = None)→ bytes
Sends a OPC-synced query and returns binary data block to bytes. If you do not provide timeout, the
method uses current opc_timeout.

query_bin_or_ascii_float_list(query: str)→ List[float]
Queries a list of floating-point numbers that can be returned in ASCII format or in binary format. - For
ASCII format, the list numbers are decoded as comma-separated values. - For Binary Format, the numbers
are decoded based on the property BinFloatFormat, usually float 32-bit (FORM REAL,32).

query_bin_or_ascii_float_list_with_opc(query: str, timeout: Optional[int] = None)→ List[float]
Sends a OPC-synced query and reads an list of floating-point numbers that can be returned in ASCII format
or in binary format. - For ASCII format, the list numbers are decoded as comma-separated values. - For
Binary Format, the numbers are decoded based on the property BinFloatFormat, usually float 32-bit (FORM
REAL,32). If you do not provide timeout, the method uses current opc_timeout.

query_bin_or_ascii_int_list(query: str)→ List[int]
Queries a list of floating-point numbers that can be returned in ASCII format or in binary format. - For
ASCII format, the list numbers are decoded as comma-separated values. - For Binary Format, the numbers
are decoded based on the property BinFloatFormat, usually float 32-bit (FORM REAL,32).

query_bin_or_ascii_int_list_with_opc(query: str, timeout: Optional[int] = None)→ List[int]
Sends a OPC-synced query and reads an list of floating-point numbers that can be returned in ASCII format
or in binary format. - For ASCII format, the list numbers are decoded as comma-separated values. - For
Binary Format, the numbers are decoded based on the property BinFloatFormat, usually float 32-bit (FORM
REAL,32). If you do not provide timeout, the method uses current opc_timeout.

query_bin_block_to_file(query: str, file_path: str, append: bool = False)→ None
Queries binary data block to the provided file. If append is False, any existing file content is discarded.
If append is True, the new content is added to the end of the existing file, or if the file does not exit, it is
created. Throws an exception if the returned data was not a binary data. Example for transferring a file from
Instrument -> PC: query = f”MMEM:DATA? ‘{INSTR_FILE_PATH}’”. Alternatively, use the dedicated
methods for this purpose:

80 Chapter 6. RsOsp Utilities

data:bytes

RsOsp, Release 2.10.17.75

• send_file_from_pc_to_instrument()

• read_file_from_instrument_to_pc()

query_bin_block_to_file_with_opc(query: str, file_path: str, append: bool = False, timeout:
Optional[int] = None)→ None

Sends a OPC-synced query and writes the returned data to the provided file. If append is False, any existing
file content is discarded. If append is True, the new content is added to the end of the existing file, or if the
file does not exit, it is created. Throws an exception if the returned data was not a binary data.

write_bin_block_from_file(cmd: str, file_path: str)→ None
Writes data from the file as binary data block to the instrument using the provided command. Example for
transferring a file from PC -> Instrument: cmd = f”MMEM:DATA ‘{INSTR_FILE_PATH}’,”. Alterna-
tively, use the dedicated methods for this purpose:

• send_file_from_pc_to_instrument()

• read_file_from_instrument_to_pc()

send_file_from_pc_to_instrument(source_pc_file: str, target_instr_file: str)→ None
SCPI Command: MMEM:DATA

Sends file from PC to the instrument

read_file_from_instrument_to_pc(source_instr_file: str, target_pc_file: str, append_to_pc_file: bool =
False)→ None

SCPI Command: MMEM:DATA?

Reads file from instrument to the PC.

Set the append_to_pc_file to True if you want to append the read content to the end of the existing PC
file

get_last_sent_cmd()→ str
Returns the last commands sent to the instrument. Only works in simulation mode

get_lock()→ threading.RLock
Returns the thread lock for the current session.

By default:

• If you create standard new RsOsp instance with new VISA session, the session gets a new thread
lock. You can assign it to other RsOsp sessions in order to share one physical instrument with a
multi-thread access.

• If you create new RsOsp from an existing session, the thread lock is shared automatically making
both instances multi-thread safe.

You can always assign new thread lock by calling driver.utilities.assign_lock()

assign_lock(lock: threading.RLock)→ None
Assigns the provided thread lock.

clear_lock()
Clears the existing thread lock, making the current session thread-independent from others that might share
the current thread lock.

81

RsOsp, Release 2.10.17.75

82 Chapter 6. RsOsp Utilities

CHAPTER

SEVEN

RSOSP LOGGER

Check the usage in the Getting Started chapter here.

class ScpiLogger
Base class for SCPI logging

mode
Sets / returns the Logging mode.

Data Type LoggingMode

default_mode
Sets / returns the default logging mode. You can recall the default mode by calling the logger.mode =
LoggingMode.Default

Data Type LoggingMode

device_name: str
Use this property to change the resource name in the log from the default Resource Name (e.g.
TCPIP::192.168.2.101::INSTR) to another name e.g. ‘MySigGen1’.

set_logging_target(target, console_log: Optional[bool] = None)→ None
Sets logging target - the target must implement write() and flush(). You can optionally set the console
logging ON or OFF.

log_to_console: bool
Sets the status of logging to the console. Default value is False.

info_raw(log_entry: str, add_new_line: bool = True)→ None
Method for logging the raw string without any formatting.

info(start_time: datetime.datetime, end_time: datetime.datetime, log_string_info: str, log_string: str)→
None

Method for logging one info entry. For binary log_string, use the info_bin()

error(start_time: datetime.datetime, end_time: datetime.datetime, log_string_info: str, log_string: str)→
None

Method for logging one error entry.

log_status_check_ok
Sets / returns the current status of status checking OK. If True (default), the log contains logging of the
status checking ‘Status check: OK’. If False, the ‘Status check: OK’ is skipped - the log is more compact.
Errors will still be logged.

Data Type boolean

clear_cached_entries()→ None
Clears potential cached log entries. Cached log entries are generated when the Logging is ON, but no target
has been defined yet.

83

RsOsp, Release 2.10.17.75

set_format_string(value: str, line_divider: str = '\n')→ None
Sets new format string and line divider. If you just want to set the line divider, set the
format string value=None The original format string is: PAD_LEFT12(%START_TIME%)
PAD_LEFT25(%DEVICE_NAME%) PAD_LEFT12(%DURATION%) %LOG_STRING_INFO%:
%LOG_STRING%

restore_format_string()→ None
Restores the original format string and the line divider to LF

abbreviated_max_len_ascii: int
Defines the maximum length of one ASCII log entry. Default value is 200 characters.

abbreviated_max_len_bin: int
Defines the maximum length of one Binary log entry. Default value is 2048 bytes.

abbreviated_max_len_list: int
Defines the maximum length of one list entry. Default value is 100 elements.

bin_line_block_size: int
Defines number of bytes to display in one line. Default value is 16 bytes.

84 Chapter 7. RsOsp Logger

CHAPTER

EIGHT

RSOSP EVENTS

Check the usage in the Getting Started chapter here.

class Events
Common Events class. Event-related methods and properties. Here you can set all the event handlers.

property before_query_handler: Callable
Returns the handler of before_query events.

Returns current before_query_handler

property before_write_handler: Callable
Returns the handler of before_write events.

Returns current before_write_handler

property io_events_include_data: bool
Returns the current state of the io_events_include_data See the setter for more details.

property on_read_handler: Callable
Returns the handler of on_read events.

Returns current on_read_handler

property on_write_handler: Callable
Returns the handler of on_write events.

Returns current on_write_handler

85

RsOsp, Release 2.10.17.75

86 Chapter 8. RsOsp Events

CHAPTER

NINE

INDEX

87

RsOsp, Release 2.10.17.75

88 Chapter 9. Index

INDEX

A
abbreviated_max_len_ascii (ScpiLogger attribute),

84
abbreviated_max_len_bin (ScpiLogger attribute), 84
abbreviated_max_len_list (ScpiLogger attribute),

84

B
bin_line_block_size (ScpiLogger attribute), 84

C
clear_cached_entries() (ScpiLogger method), 83
CONFigure:ALL:BACKup, 43
CONFigure:ALL:RESTore, 44
CONFigure:ALL:RESTore:CATalog, 45
CONFigure:ALL:RESTore:DELete, 44
CONFigure:ALL:RESTore:DELete:ALL, 44
CONFigure:COMPatible:MODE, 38
CONFigure:FRAMe:ADD, 33
CONFigure:FRAMe:CATalog, 33
CONFigure:FRAMe:DEFine, 35
CONFigure:FRAMe:DELete, 33
CONFigure:FRAMe:DELete:ALL, 33
CONFigure:FRAMe:EXPort, 33
CONFigure:FRAMe:IMPort, 37
CONFigure:FRAMe:IMPort:CATalog, 38
CONFigure:FRAMe:IMPort:DELete, 37
CONFigure:FRAMe:IMPort:DELete:ALL, 37
CONFigure:FRAMe:INSert, 36
CONFigure:LOCK:MODE, 47
CONFigure:MAINinfo:PATH, 40
CONFigure:MAINinfo:TEXT, 40
CONFigure:POWerup:PATH, 41
CONFigure:POWerup:RESet, 41
CONFigure:RELay:DELay, 46
CONFigure:VIRTual:MODE, 40

D
default_mode (ScpiLogger attribute), 83
device_name (ScpiLogger attribute), 83
DIAGnostic:SERVice:HWINfo, 64
DIAGnostic:SERVice:MODule:FUNCtion, 66

DIAGnostic:SERVice:MODule:HWINfo, 65
DIAGnostic:SERVice:MODule:TEMPerature, 66
DIAGnostic:SERVice:USER:ERRor, 67
DIAGnostic:SERVice:USER:WARNing, 67

E
error() (ScpiLogger method), 83

I
info() (ScpiLogger method), 83
info_raw() (ScpiLogger method), 83

L
log_status_check_ok (ScpiLogger attribute), 83
log_to_console (ScpiLogger attribute), 83

M
mode (ScpiLogger attribute), 83

R
READ:IO:IN, 48
READ:MODule:INTerlock, 50
READ:RELay:OPERations, 51
restore_format_string() (ScpiLogger method), 84
ROUTe:ATTenuation, 55
ROUTe:CLOSe, 52
ROUTe:PATH:CATalog, 58
ROUTe:PATH:DEFine, 60
ROUTe:PATH:DELete:ALL, 58
ROUTe:PATH:DELete:NAME, 61
ROUTe:PATH:EXPort, 58
ROUTe:PATH:IMPort, 62
ROUTe:PATH:IMPort:CATalog, 63
ROUTe:PATH:IMPort:DELete, 62
ROUTe:PATH:IMPort:DELete:ALL, 62
ROUTe:PATH:LAST, 58
ROUTe:PHASe, 57

S
ScpiLogger (class in RsOsp.Internal.ScpiLogger), 83
set_format_string() (ScpiLogger method), 83

89

RsOsp, Release 2.10.17.75

set_logging_target() (ScpiLogger method), 83

T
TRIGger:COUNt:OVERflow, 73
TRIGger:COUNt:VALue, 73
TRIGger:EXECute, 72
TRIGger:EXPort, 67
TRIGger:IMPort, 74
TRIGger:IMPort:CATalog, 75
TRIGger:IMPort:DELete, 74
TRIGger:IMPort:DELete:ALL, 74
TRIGger:INDex, 67
TRIGger:SEQuence:DEFine:ALL, 71
TRIGger:SEQuence:DEFine:ENTRy, 72
TRIGger:SEQuence:DEFine:LENGth, 71
TRIGger:SIGNal:LEVel, 69
TRIGger:SIGNal:SLOPe, 69
TRIGger:SIGNal:TERMination, 69
TRIGger:STATe, 67
TRIGger:TYPE, 67

90 Index

	Getting Started
	Introduction
	Installation
	Finding Available Instruments
	Initiating Instrument Session
	Plain SCPI Communication
	Error Checking
	Exception Handling
	Transferring Files
	Writing Binary Data
	Transferring Big Data with Progress
	Multithreading
	Logging

	Revision History
	Enums
	ReplaceOrKeep
	TriggerExecType
	TriggerSlope
	TriggerType

	Examples
	RsOsp API Structure
	Configure
	Frame
	Define
	Insert
	ImportPy
	Catalog

	Compatible
	Virtual
	MainInfo
	PowerUp
	All
	Restore
	Catalog

	Relay
	Delay

	Lock

	Read
	Io
	InputPy

	Module
	Interlock

	Relay
	Operations

	Route
	Close
	Attenuation
	Phase
	Path
	Define
	Delete
	ImportPy
	Catalog

	Diagnostic
	Service
	Module
	HwInfo
	Temperature
	Function

	User

	Trigger
	Signal
	Sequence
	Define
	Entry

	Execute
	Count
	ImportPy
	Catalog

	RsOsp Utilities
	RsOsp Logger
	RsOsp Events
	Index
	Index

